Skip to main content
Log in

Colloidal transparent conducting oxide nanocrystals: A new infrared plasmonic material

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Thin films of transparent conducting oxides (TCO) are technologically important for applications as a visible light transparent electrode in a wide variety of optoelectronic devices. In the last few years, researchers started to explore novel size- and shape-dependent properties of TCO, where the crystallite size is ∼10 nm. So far, the localized surface plasmon resonance (LSPR) properties of TCO nanocrystals (NCs) have been found to be the most interesting. TCOs like Sn-doped In2O3, Al-doped ZnO and In-doped CdO NCs, exhibit LSPR band in near- to mid-infrared region. LSPR from a TCO NC exhibits many intrinsic differences with that of a metal NC. Carrier density in a TCO NC can easily be tuned by controlling the dopant concentration, which allows the LSPR band to be tuned over a range of ∼2000 nm (∼0.62 eV) in the near- to mid-infrared region. This review discusses recent advances in the understanding of plasmonic properties of various TCO NCs and highlights the potential applications of such unique plasmonic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. G Frank and H Kostlin, Appl. Phys. A-Mater. Sci. Process. 27, 197 (1982)

    Article  ADS  Google Scholar 

  2. A Nag and A Shireen, Solid-State Commun. 150, 1679 (2010)

    Article  ADS  Google Scholar 

  3. Transparent Conductive Coatings: Technologies and Global Markets, 2014

  4. U Kreibig and M Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995) Vol. 25

  5. M A El-Sayed, Acc. Chem. Res. 34, 257 (2001)

    Article  Google Scholar 

  6. P Pramod and K G Thomas, Adv. Mater. 20, 4300 (2008)

    Article  Google Scholar 

  7. R A Gilstrap, C J Capozzi, C G Carson, R A Gerhardt, and C J Summers, Adv. Mater. 20, 4163 (2008)

    Google Scholar 

  8. Y X Zhao, H C Pan, Y B Lou, X F Qiu, J J Zhu, and C Burda, J. Am. Chem. Soc. 131, 4253 (2009)

    Article  Google Scholar 

  9. T Wang and P V Radovanovic, J. Phys. Chem. C 115, 406 (2011)

    Article  Google Scholar 

  10. B Tandon, G S Shanker, and A Nag, J. Phys. Chem. Lett. 5, 2306 (2014)

    Article  Google Scholar 

  11. G S Shanker, B Tandon, T Shibata, S Chattopadhyay, and A Nag, Chem. Mater. 27, 892 (2015)

    Article  Google Scholar 

  12. G V Naik, V M Shalaev, and A Boltasseva, Adv. Mater. 25, 3264 (2013)

    Article  Google Scholar 

  13. J A Faucheaux, A L D Stanton, and P K Jain, J. Phys. Chem. Lett. 5, 976 (2014)

    Article  Google Scholar 

  14. S D Lounis, E L Runnerstrorm, A Llordes, and D J Milliron, J. Phys. Chem. Lett. 5, 1564 (2014)

    Article  Google Scholar 

  15. N Ashcroft and D Mermin, Solid state physics, Thomson Learning (1976)

  16. J Pérez-Juste, I Pastoriza-Santos, L M Liz-Marzán, and P Mulvaney, Coord. Chem. Rev. 249, 1870 (2005)

    Article  Google Scholar 

  17. M M Alvarez, J T Khoury, T G Schaaff, M N Shafigullin, I Vezmar, and R L Whetten, J. Phys. Chem. B 101, 3706 (1997)

    Article  Google Scholar 

  18. F Mark, Optical properties of solids (Oxford University Press, New York, 2001)

    Google Scholar 

  19. J M Luther, P K Jain, T Ewers, and A P Alivisatos, Nat. Mater. 10, 361 (2011)

    Article  ADS  Google Scholar 

  20. A M Schimpf, N Thakkar, C E Gunthardt, D J Masiello, and D R Gamelin, ACS Nano 8, 1065 (2013)

    Article  Google Scholar 

  21. T Nütz, U Z Felde, and M Haase, J. Chem. Phys. 110, 12142 (1999)

    Article  ADS  Google Scholar 

  22. N M Torkaman, Y Ganjkhanlou, M Kazemzad, H H Dabaghi, and M Keyanpour-Rad, Mater. Character. 61, 362 (2010)

    Article  Google Scholar 

  23. S D Lounis, E L Runnerstrom, A Bergerud, D Nordlund, and D J Milliron, J. Am. Chem. Soc. 136, 7110 (2014)

    Article  Google Scholar 

  24. J H W de Wit, J. Solid State Chem. 20, 143 (1977)

    Article  ADS  Google Scholar 

  25. J H W de Wit, J. Solid State Chem. 13, 192 (1975)

    Article  ADS  Google Scholar 

  26. J H W de Wit, J. Solid State Chem. 8, 142 (1973)

    Article  ADS  Google Scholar 

  27. J H W de Wit, G Van Unen, and M Lahey, J. Phys. Chem. Solids 38, 819 (1977)

    Article  ADS  Google Scholar 

  28. F A Kröger and H J Vink, Relations between the concentrations of imperfections in crystalline solids, in: Solid state physics edited by S Frederick, T David (Academic Press, 1956) pp. 307–435

  29. G Frank and H Köstlin, Appl. Phys. A 27, 197 (1982)

    Article  ADS  Google Scholar 

  30. O Warschkow, D E Ellis, G B González, and T O Mason, J. Am. Cer. Soc. 86, 1707 (2003)

    Article  Google Scholar 

  31. T Minami, Semicond. Sci. Technol. 20, S35 (2005)

    Article  ADS  Google Scholar 

  32. R Buonsanti, A Llordes, S Aloni, B A Helms, and D J Milliron, Nano Lett. 11, 4706 (2011)

    Article  ADS  Google Scholar 

  33. E D Gaspera, A S R Chesman, J van Embden, and J J Jasieniak, ACS Nano 8, 9154 (2014)

    Article  Google Scholar 

  34. T R Gordon, T Paik, D R Klein, G V Naik, H Caglayan, A Boltasseva, and C B Murray, Nano Lett. 13, 2857 (2013)

    Article  ADS  Google Scholar 

  35. X C Ye, J Y Fei, B T Diroll, T Paik, and C B Murray, J. Am. Chem. Soc. 136, 11680 (2014)

    Article  Google Scholar 

  36. J A Faucheaux and P K Jain, J. Phys. Chem. Lett. 4, 3024 (2013)

    Article  Google Scholar 

  37. A M Schimpf, N Thakkar, C E Gunthardt, D J Masiello, and D R Gamelin, ACS Nano 8, 1065 (2014)

    Article  Google Scholar 

  38. G Garcia, R Buonsanti, E L Runnerstrom, R J Mendelsberg, A Llordes, A Anders, T J Richardson, and D J Milliron, Nano Lett. 11, 4415 (2011)

    Article  ADS  Google Scholar 

  39. K P Kadlag, M J Rao, and A Nag, J. Phys. Chem. Lett. 4, 1676 (2013)

    Article  Google Scholar 

  40. K P Kadlag, P Patil, M J Rao, S Datta, and A Nag, Crystengcomm. 16, 3605 (2014)

    Article  Google Scholar 

  41. R Baetens, B P Jelle, and A Gustavsen, Sol. Energy Mater. Sol. Cells 94, 87 (2010)

    Article  Google Scholar 

  42. R Bardhan, W X Chen, C Perez-Torres, M Bartels, R M Huschka, L L Zhao, E Morosan, R G Pautler, A Joshi, and N J Halas, Adv. Funct. Mater. 19, 3901 (2009)

    Article  Google Scholar 

  43. W J Dong, Y S Li, D C Niu, Z Ma, J L Gu, Y Chen, W R Zhao, X H Liu, C S Liu, and J L Shi, Adv. Mater. 23, 5392 (2011)

    Article  Google Scholar 

  44. Q W Tian, J Q Hu, Y H Zhu, R J Zou, Z G Chen, S P Yang, R W Li, Q Q Su, Y Han, and X G Liu, J. Am. Chem. Soc. 135, 8571 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

AN acknowledges Science and Engineering Research Board (SERB) Govt. of India for the Ramanujan Fellowship (SR /S2 /RJN-61 /2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ANGSHUMAN NAG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TANDON, B., ASHOK, A. & NAG, A. Colloidal transparent conducting oxide nanocrystals: A new infrared plasmonic material. Pramana - J Phys 84, 1087–1098 (2015). https://doi.org/10.1007/s12043-015-1008-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-1008-6

Keywords

PACS Nos

Navigation