Skip to main content
Log in

First results from RHIC-PHENIX

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The PHENIX experiment consists of a large detector system located at the newly commissioned relativistic heavy ion collider (RHIC) at the Brookhaven National Laboratory. The primary goal of the PHENIX experiment is to look for signatures of the QCD prediction of a deconfined high-energy-density phase of nuclear matter quark gluon plasma. PHENIX started data taking for Au+Au collisions at √sNN=130 GeV in June 2000. The signals from the beam-beam counter (BBC) and zero degree calorimeter (ZDC) are used to determine the centrality of the collision. A Glauber model reproduces the ZDC spectrum reasonably well to determine the participants in a collision. Charged particle multiplicity distribution from the first PHENIX paper is compared with the other RHIC experiment and the CERN, SPS results. Transverse momentum of photons are measured in the electro-magnetic calorimeter (EMCal) and preliminary results are presented. Particle identification is made by a time of flight (TOF) detector and the results show clear separation of the charged hadrons from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The PHENIX Collaboration: D P Morrison, Nucl. Phys. A638, 565c (1998)

  2. J D Bjorken, Phys. Rev. D27, 140 (1983)

    ADS  Google Scholar 

  3. E Kistenev et al, Proceedings of the Fifth International Conference on Calorimetry in High Energy Physics (World Scientific, 1994) pp. 211–223

  4. G David, et al, IEEE Trans. Nucl. Sci. 45, 692, 705 (1998)

    Article  Google Scholar 

  5. We used Woods-Saxon nuclear density distribution, Au nucleus radius R=6.65 ± 0.3 fm, diffuseness a=0.54 ± 0.01 fm and nucleon-nucleon cross section σnn=40 ± 5 mb

  6. WA98 Collaboration: M M Aggarwal et al, nucl-ex/0008004

  7. F Antinori et al, Preprint CERN-EP-2000-002

  8. PHOBOS Collaboration: B B Back et al, Phys. Rev. Lett. 85, 3100 (2000)

    Article  Google Scholar 

  9. NA49 Collaboration: F Siklér et al, Nucl. Phys. A661, 45c (1999)

  10. X N Wang and M Gyulassy, nucl-th/0008014

  11. K J Eskola, K Kajantie, P V Ruuskanen and K Tuominen, Nucl. Phys. B570, 379 (2000) and hep-ph/0009246

    Article  ADS  Google Scholar 

  12. e.g. see Proc. Quark Matter 1987 edited by H Satz, H J Specht, R Stock, Z. Phys. C38 (1988) pp. 1–370 Proc. Quark Matter 1999, edited by L Riccati, M Masera, E Vercellin, Nucl Phys. A661, pp. 1c–765c (1999)

  13. E802 Collaboration: T Abbott et al, BNL-67641 (August, 2000) submitted to Phys Rev.

  14. X N Wang and M Gyulassy, Phys. Rev. D44, 3501 (1991)

    ADS  Google Scholar 

  15. NA49 Collaboration: T Alber et al, Phys. Rev. Lett. 75, 3814 (1995)

    Article  Google Scholar 

  16. X N Wang and Z Huang, hep-ph/9701227

  17. X N Wang, Phys. Rev. C61, 064910 (2000)

    Google Scholar 

  18. WA98 Collaboration, M M Aggarwal, et al, Phys. Rev. Lett. 85, 3595 (2000)

    Article  ADS  Google Scholar 

  19. J-Y Ollitrault, Phys. Rev. D46, 229 (1992)

    ADS  Google Scholar 

  20. P Danielewicz, Phys. Rev. C51, 716 (1995)

    ADS  Google Scholar 

  21. H Sorge, Phys. Rev. Lett. 78, 2309 (1997)

    Article  ADS  Google Scholar 

  22. D Teaney and E V Shuryak, Phys. Rev. Lett. 83, 4951 (1999)

    Article  ADS  Google Scholar 

  23. WA93 Collaboration: M M Aggarwal et al, Phys. Lett. B403, 390 (1997)

    ADS  Google Scholar 

  24. NA49 Collaboration: H Appelshäuser et al, Phys. Rev. Lett. 80, 4136 (1998)

    Article  ADS  Google Scholar 

  25. WA98 Collaboration: M M Aggarwal et al, Nucl. Phys. A638, 459 (1998)

    ADS  Google Scholar 

  26. E895 Collaboration: C Pinkenburg et al, Phys. Rev. Lett. 83, 1295 (1999)

    Article  ADS  Google Scholar 

  27. STAR Collaboration: K H Ackermann et al, Phys. Rev. Lett. 86, 402 (2001)

    Article  ADS  Google Scholar 

  28. A M Poskanzer and S A Voloshin, nucl-ex/9805001

  29. P F Kolb, J Sollfrank and U Heinz, nucl-th/9906003

  30. D Teaney, J Lauret and E V Shuryak, nucl-th/0011058

  31. G J Alner et al, Z. Phys. C33, 1 (1986)

    ADS  Google Scholar 

  32. PHENIX Collaboration: K Adcox et al, Phys. Rev. Lett. 86, 3500 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For the PHENXI Collaboration

The word PHENIX is the abbreviation of Pioneering High Energy Nuclear Interaction Experiment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, T.K., Adcox, K., Adler, S.S. et al. First results from RHIC-PHENIX. Pramana - J Phys 57, 355–369 (2001). https://doi.org/10.1007/s12043-001-0045-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-001-0045-5

Keywords

PACS Nos

Navigation