Skip to main content
Log in

Comparative mapping reveals similar linkage of functional genes to QTL of yield-related traits between Brassica napus and Oryza sativa

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Oryza sativa and Brassica napus—two important crops for food and oil, respectively—share high seed yield as a common breeding goal. As a model plant, O. sativa genomics have been intensively investigated and its agronomic traits have been advanced. In the present study, we used the available information on O. sativa to conduct comparative mapping between O. sativa and B. napus, with the aim of advancing research on seed-yield and yield-related traits in B. napus. Firstly, functional markers (from 55 differentially expressed genes between a hybrid and its parents) were used to detect B. napus genes that co-localized with yield-related traits in an F2:3 population. Referring to publicly available sequences of 55 B. napus genes, 53 homologous O. sativa genes were subsequently detected by screening, and their chromosomal locations were determined using silico mapping. Comparative location of yield-related QTL between the two species showed that a total of 37 O. sativa and B. napus homologues were located in similar yield-related QTL between species. Our results indicate that homologous genes between O. sativa and B. napus may have consistent function and control similar traits, which may be helpful for agronomic gene characterization in B. napus based on what is known in O. sativa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bi F. C., Zhang Q. F., Liu Z., Fang C., Li J. A., Su J. B. et al. 2011 A conserved cysteine motif is critical for rice ceramide kinase activity and function. PLoS ONE 6, e18079.

    Article  PubMed  CAS  Google Scholar 

  • Brendel V., Kurtz S. and Walbot V. 2002 Comparative genomics of Arabidopsis and maize: prospects and limitations. Genome Biol. 3, REVIEWS1005.

    Google Scholar 

  • Cavell A. C., Lydiate D. J., Parkin I. A. P., Dean C. and Trick M. 1998 Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41, 62–69.

    PubMed  CAS  Google Scholar 

  • Gale M. D. and Devos K. M. 1998 Plant comparative genetics after 10 years. Science 282, 656–659.

    Article  PubMed  CAS  Google Scholar 

  • Gao X., Chen Z., Zhang J., Li X., Chen G., Li X. et al. 2011 OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. Planta online 22, 713–727.

    Google Scholar 

  • Kowalski S. P., Lan T. H., Feldmann K. A. and Paterson A. H. 1994 Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138, 499–510.

    PubMed  CAS  Google Scholar 

  • Li Y. Y., Ma C. Z., Fu T. D., Yang G. S., Tu J. X., Chen Q. F. et al. 2006 Construction of a molecular functional map of rapeseed (Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphytica 152, 25–39.

    Article  CAS  Google Scholar 

  • Li Y. Y., Shen J. X., Wang T. H., Chen Q. F., Zhang X. G., Fu T. D. et al. 2007 QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Aust. J. Agric. Res. 58, 759–766.

    Article  CAS  Google Scholar 

  • Liang C. Z., Mao L., Ware D. and Stein L. 2009 Evidence-based gene predictions in plant genomes. Genome Res. 19, 1912–1923.

    Article  PubMed  CAS  Google Scholar 

  • Liu T. M., Shao D., Kovi M. R. and Xing Y. Z. 2010 Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice (Oryza sativa L.). Theor. Appl. Genet. 120, 933–942.

    Article  PubMed  CAS  Google Scholar 

  • Mao H., Sun S., Yao J., Wang C, Yu S., Xu C. et al. 2010 Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl. Acad. Sci. USA 107, 19579–19584.

    Article  PubMed  CAS  Google Scholar 

  • Parkin I. A. P., Gulden S. M., Sharpe A. G., Lukens L., Trick M., Osborn T. C. et al. 2005 Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171, 765–781.

    Article  PubMed  CAS  Google Scholar 

  • Paterson A. H., Lan T. H., Reischmann K. P., Chang C., Lin Y. R., Liu S. C. et al. 1996 Toward a unified genetic map of higher plants, transcending the monocot–dicot divergence. Nat. Genet. 14, 380–382.

    Article  PubMed  CAS  Google Scholar 

  • Peng J. R., Richards D. E., Hartley N. M., Murphy G. P., Devos K. M., Flintham J. E. et al. 1999 ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.

    Article  PubMed  CAS  Google Scholar 

  • Reeves P. A., He Y., Schmitz R. J., Amasino R. M., Panella L. W. and Richards C. M. 2007 Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 176, 295–307.

    Article  PubMed  CAS  Google Scholar 

  • Robert L. S., Robson F., Sharpe A., Lydiate D. and Coupland G. 1998 Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol. Biol. 37, 763–772.

    Article  PubMed  CAS  Google Scholar 

  • Shen J. R., Wu J. Y., Zhang J., Liu P. W. and Yang G. S. 2006 Analysis of differential gene expression pattern in Brassica napus hybrid Huayouza6 and its parents using Arabidopsis cDNA microarray. Sci. Agric. Sin. 39, 23–28.

    CAS  Google Scholar 

  • van Dodeweerd A. M., Hall C. R., Bent E. G., Johnson S. J., Bevan M. W. and Bancroft I. 1999 Identification and analysis of homoeologous segments of the genomes of rice and Arabidopsis thaliana. Genome 42, 887–892.

    PubMed  Google Scholar 

  • Wolfe K. H., Gouy M., Yang Y. W., Sharp P. M. and Li W. H. 1989 Date of the monocot–dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. USA 86, 6201–6205.

    Article  PubMed  CAS  Google Scholar 

  • Xing Y. Z. and Zhang Q. F. 2010 Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61, 421–442.

    Article  PubMed  CAS  Google Scholar 

  • Xue W. Y., Xing Y. Z., Weng X. Y., Zhao Y., Tang W. J., Wang L. et al. 2008 Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761–767.

    Article  PubMed  CAS  Google Scholar 

  • Yu J., Hu S. N., Wang J., Wong G. K. S., Li S. G., Liu B. et al. 2002 A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296, 79–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHAOZHI MA.

Additional information

[Li F., Ma C., Chen Q., Liu T., Shen J., Tu J., Xing Y. and Fu T. 2012. Comparative mapping reveals similar linkage of functional genes to QTL of yield-related traits between Brassica napus and Oryza sativa. J. Genet. 91, xx-xx]

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 495 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

LI, F., MA, C., CHEN, Q. et al. Comparative mapping reveals similar linkage of functional genes to QTL of yield-related traits between Brassica napus and Oryza sativa . J Genet 91, 163–170 (2012). https://doi.org/10.1007/s12041-012-0155-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-012-0155-5

Keywords

Navigation