Skip to main content

Advertisement

Log in

Pyroxenite dykes with petrological and geochemical affinities to the Alaskan-type ultramafics at the northwestern margin of the Cuddapah basin, Dharwar craton, southern India: Tectonomagmatic implications

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Two previously reported lamprophyre dykes from the Kalwakurthy area, at the northwestern margin of the Cuddapah basin, Dharwar craton, southern India, are reinvestigated. Petrography reveals that they have an overall cumulate texture and comprise clinopyroxene (dominant phase), amphibole (mostly secondary), magnetite, ilmenite and chromite and are reclassified as clinopyroxenites. The chemistry of clinopyroxene and chromite, bulk-rock major and trace element composition and the Sr–Nd isotopic systematics of the Kalwakurthy dykes strongly favour the involvement of subduction-related processes in their genesis and are strikingly similar to those of the continental arc-cumulates and Alaskan-type ultramafics reported from the supra-subduction type of tectonic settings. Incompatible trace element ratios, involving high field strength elements, of these clinopyroxenites are also suggestive of the fluid-related metasomatism influencing their source regions. Petrogenetic modelling reveals that 10–20% partial melting of the fertile lithospheric mantle source was involved in their genesis. The tectonomagmatic significance of the studied clinopyroxenites is evaluated in light of the existing models invoking a Neoarchaean subduction in the evolution of the Dharwar craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-Boghdady A and Economou-Eliopoulos M 2005 Fluid inclusions in chromite from a pyroxenite dike of the Pindos ophiolite complex; Chem. Erde-Geochem. 65 191–202.

    Google Scholar 

  • Aldanmaz E, Pearce J A, Thirlwall M F and Mitchell J G 2000 Petrogenetic evolution of late cenozoic, post-collision volcanism in western Anatolia, Turkey; J. Volcanol. Geotherm. Res. 102 67–95.

    Google Scholar 

  • Allégre C J and Turcotte D L 1986 Implications of a 2-component marble-cake mantle; Nature 323 123–127.

    Google Scholar 

  • Aulbach S and Jacob D E 2016 Major- and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths; Lithos 262 586–605.

    Google Scholar 

  • Banerjee A, Chakrabarti R and Mandal S 2016 Geochemical anatomy of a spheroidally weathered diabase; Chem. Geol. 440 124–138.

    Google Scholar 

  • Barnes S J 1998 Chromite in komatiites, magmatic control on crystallization and composition; J. Petrol. 39(11) 1689–1720.

    Google Scholar 

  • Beard J S and Barker F 1989 Petrology and tectonic significance of gabbros, tonalities, shoshonites and anorthosites in a late Paleozoic arc-root complex in the Wrangellia terrane, southern Alaska; J. Geol. 97 667–683.

    Google Scholar 

  • Beard A D, Downes H, Hegner E and Sablukov S M 2000 Geochemistry and mineralogy of kimberlites from the Arkhangelsk region, NW Russia: Evidence for transitional kimberlite magma types; Lithos 51 47–73.

    Google Scholar 

  • Barnes S J and Roeder P L 2001 The range of spinel compositions in terrestrial mafic and ultramafic rocks; J. Petrol. 42(12) 2279–2302.

    Google Scholar 

  • Bodinier J L, Fabries J, Lorand J P, Dostal J and Dupuy C 1987 Geochemistry of amphibole pyroxenite veins from the Lherz and Freychinède ultramafic bodies; Bull. Mineral. 110 345–358.

    Google Scholar 

  • Burg J P, Bodinier J L, Gerya T, Bedini R M, Boudier F, Dautria J M, Prikhodko V, Efimov A, Pupier E and Balanec J L 2009 Translithospheric mantle diapirism: Geological evidence and numerical modelling of the Kondyor zoned ultramafic complex (Russian Far-East); J. Petrol. 50 289–321.

    Google Scholar 

  • Cai K, Sun M, Yuan C, Zhao G, Xiao W and Long X 2012 Keketuohai maficultramafic complex in Chinese Altai, NW China: Petrogenesis and geodynamic significance; Chem. Geol. 294–295 26–41.

    Google Scholar 

  • Chadwick B, Vasudev V N and Hegde G V 2000 The Dharwar craton, southern India, interpreted as the result of late Archaean oblique convergence; Precamb. Res. 99 91–111.

    Google Scholar 

  • Chalapathi Rao N V, Wu F Y, Mitchell R H, Li L Q and Lehmann B 2013 Mesoproterozoic U–Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1 Ga tectonomagmatic event; Chem. Geol. 353 48–64.

    Google Scholar 

  • Chalapathi Rao N V, Kumar A, Sahoo S, Dongre A N and Talukdar D 2014 Petrology and petrogenesis of Mesoproterozoic lamproites from the Ramadugu field, NW margin of the Cuddapah basin, Eastern Dharwar craton, southern India; Lithos 196–197 150–168.

    Google Scholar 

  • Chardon D, Peucat J J, Jayananda M, Choukroune P and Fanning C M 2002 Archean granite–greenstone tectonics at Kolar (South India): Interplay of diapirism and bulk inhomogenous shortening during juvenile magmatic accretion; Tectonics 21(3) 1016. https://doi.org/10.1029/2001TC901032.

    Article  Google Scholar 

  • Chin E J, Shimizu K, Bybee G M and Erdman M E 2018 On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective; Earth Planet. Sci. Lett. 482 277–287.

    Google Scholar 

  • Das Sharma S and Ramesh D S 2013 Imaging mantle lithosphere for diamond prospecting in southeast India; Lithosphere 5 331–342.

    Google Scholar 

  • Dharma Rao C V and Santosh M 2011 Continental arc magmatism in a Mesoproterozoic convergent margin: Petrological and geochemical constraints from the magmatic suite of Kondapalle along the eastern margin of the Indian plate; Tectonophysics 510 151–171.

    Google Scholar 

  • Dick H J B and Sinton J M 1979 Compositional layering in Alpine peridotites: Evidence for pressure solution creep in the mantle; J. Geol. 87 403–416.

    Google Scholar 

  • Downes H 2007 Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: Ultramafic massifs in orogenic belts in Western Europe and NW Africa; Lithos 99 1–24.

    Google Scholar 

  • Eyuboglu Y, Dilek Y, Bozkurt E, Bektas O, Rojay B and Sen C 2010 Structure and geochemistry of an Alaskan-type ultramafic–mafic complex in the Eastern Pontides, NE Turkey; Gondwana Res. 18 230–252.

    Google Scholar 

  • Floyd P A and Winchester J A 1975 Magma type and tectonic setting discrimination using immobile elements; Earth Planet. Sci. Lett. 27 211–218.

    Google Scholar 

  • Foley S F, Venturelli G, Green D H and Toscani L 1987 The ultrapotassic rocks: Characteristics, classification and constraints for petrogenetic models; Earth Sci. Rev. 24 81–134.

    Google Scholar 

  • French J E, Heaman L M, Chacko T and Srivastava R K 2008 1891–1883 ma Southern Bastar-Cuddapah mafic igneous events, India: A newly recognized large igneous province; Precamb. Res. 160(3–4) 308–322.

    Google Scholar 

  • Gopal Reddy T, Sarvothaman H and Vishawanatha Rao N 1992 Report on granite project, Mahabubnagar district, Andhra Pradesh; Unpubl. Rep. Geol. Surv. India, FS: 1988-90.

    Google Scholar 

  • Green D H 1971 Composition of basaltic magmas as indicators of conditions of origin: Application to oceanic volcanism; Phil. Trans. R. Soc. Lond. A 268 707–725.

    Google Scholar 

  • Harish Kumar S B, Jayananda M, Kano T, Shadakshara Swamy N and Mahabaleswar B 2003 Late Archaean juvenile magmatism accretion process in the Eastern Dharwar craton; Kuppam-Karimangalam area; Geol Soc. India Memoir 50 375–408.

    Google Scholar 

  • Helmy H M and El Mahallawi M M 2003 Gabbro Akarem mafic-ultramafic complex, Eastern Desert, Egypt: A late Precambrian analogue of Alaskan-type complexes; Mineral. Petrol. 77 85–108.

    Google Scholar 

  • Helmy H M, Abd Yasser M, El-Rahman Y M, Yoshikawa M, Shibata T, Arai S, Tamura A and Kagami H 2014 Petrology and Sm-Nd dating of the Genina Gharbia Alaskan-type complex (Egypt): Insights into deep levels of Neoproterozoic island arcs; Lithos 198–199 263–280.

    Google Scholar 

  • Herzberg C 2004 Geodynamic information in peridotite petrology; J. Petrol. 45(12) 2507–2530.

    Google Scholar 

  • Himmelberg G R and Loney R A 1995 Characteristics and petrogenesis of Alaskantype ultramafic-mafic intrusions, Southeastern Alaska; US Geol. Surv. Prof. Paper 1564 1–47.

    Google Scholar 

  • Irvine T N 1974 Petrology of the Duke island ultramafic complex, southern Alaska; Geol. Soc. Am. Memoir 138 240.

    Google Scholar 

  • Jayananda M, Peucat J J, Chardon D, Krishna Rao B, Fanning C M and Corfu F 2013 Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India: Constraints from SIMS U-Pb zircon geochronology and Nd isotopes; Precamb. Res. 227 55–76.

    Google Scholar 

  • Jayananda M, Santosh M and Aadhiseshan K R 2018 Formation of Archean (3600–2500 Ma) continental crust in the Dharwar craton, southern India; Earth Sci. Rev. 181 12–42.

    Google Scholar 

  • Kamenetsky V S, Crawford A J and Meffre S 2001 Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks; J. Petrol. 42 655–671.

    Google Scholar 

  • Karmalkar N R, Duraiswami R A, Chalapathi Rao N V and Paul D K 2009 Mantle-derived mafic-ultramafic xenoliths and the nature of Indian sub-continental lithosphere; J. Geol. Soc. India 73(5) 657–679.

    Google Scholar 

  • Kutty T R N, Murthy S R N and Anantha Iyer G V 1986 REE geochemistry and petrogenesis of ultramafic rocks of Chalk Hills, Salem; J. Geol. Soc. India 28(6) 449–466.

  • La Flèche M R, Camiré G and Jenner G A 1998 Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Quebéc, Canada; Chem. Geol. 148 115–136.

    Google Scholar 

  • Leake B E et al. 1997 Nomenclature of amphiboles: report of the subcommitee on amphiboles of the international mineralogical association, commission on new minerals and mineral names; Am. Mineral. 82 1019–1037.

    Google Scholar 

  • Le Bas M J, Subbarao K V and Walsh J N 2002 Metacarbonatite or marble? – The case of the carbonate, pyroxenite, calcite–apatite rock complex at Borra, Eastern Ghats, India; J. Asian Earth Sci. 20 127–140.

    Google Scholar 

  • Loucks R 1990 Discrimination of ophiolitic from nonophiolitic ultramafic–mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene; Geology 18 346–349.

    Google Scholar 

  • Manikyamba C and Kerrich R 2012 Eastern dharwar craton, India: Continental lithosphere growth by accretion of diverse plume and arc terranes; Geosci. Front. 3 225–240.

    Google Scholar 

  • Manu Prasanth M P, Hari K R, Chalapathi Rao N V, Hou G and Pandit D 2017 An island-arc tectonic setting for the Neoarchean Sonakhan Greenstone Belt, Bastar Craton, central India: Insights from the chromite mineral chemistry and geochemistry of the siliceous high-Mg basalts (SHMB); Geol. J., https://doi.org/10.1002/gj.2971.

    Google Scholar 

  • McKenzie D P and O’Nions R K 1991 Partial melt distribution from inversion of rare earth element concentrations; J. Petrol. 32 1021–1109.

    Google Scholar 

  • Meshram R and Venkateswara Rao S 2009 Mineralogy and geochemistry of lamprophyres from Kalwakurty, Mahabubnagar district, Andhra Pradesh; Ind. J. Geosci. 63(4) 361–372.

    Google Scholar 

  • Middelburg J J, van der Weijden C H and Woittiez J R W 1988 Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks; Chem. Geol. 68 253–273.

    Google Scholar 

  • Miller C, Schuster R, Klötzli U, Frank W and Purtscheller F 1999 Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis; J. Petrol. 40 1399–1424.

    Google Scholar 

  • Mishra D C and Prajapati S K 2003 A plausible model for evolution of schist belts and granite plutons of Dharwar craton, India and Madagascar during 3.0–2.5 Ga: Insight from gravity modeling constrained in part from seismic studies; Gondwana Res. 6 501–511.

    Google Scholar 

  • Mondal S K, Ripley E M, Li C and Frei R 2006 The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum craton, India; Precamb. Res. 148 45–66.

    Google Scholar 

  • Morimoto N, Fabries J, Fergusen A K, Ginzburg I V, Ross M, Seifert F A, Zussman J, Aoki K and Gottardi G 1988 Nomenclature of pyroxenes; Am. Mineral. 73 1123–1133.

    Google Scholar 

  • Morten L 1978 REE abundance in spinel-lherzolite nodules and host basalts; Mineral. Petrogr. Acta 17 15–40.

    Google Scholar 

  • Mukherjee R, Mondal S K, Rosing M T and Frei R 2010 Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, western Dharwar craton (India): Potential parental melts and implications for tectonic setting; Contrib. Mineral. Petrol. 160 865–885.

    Google Scholar 

  • Naqvi S M and Rogers J W 1987 Precambrian Geology of India. viii 233 pp. New York, Oxford: Clarendon Press; Oxford University Press. ISBN 0 19 503653 0. Geol. Mag. 125(5) 563–565.

  • Naqvi S M 2005 Geology and evolution of the Indian plate (from hadean to holocene – 4 Ga to 4 Ka); Capital Publishing Company, New Delhi, 450p.

    Google Scholar 

  • Naqvi S M, Khan R M K, Manikyamba C, Ram Mohan M and Khanna T C 2006 Geochemistry of the Neoarchaean high-Mg basalts, boninites and adakites from the Kushtagi- Hungund greenstone belt of the Eastern Dharwar Craton (EDC): Implications for the tectonic setting; J. Asian Earth Sci. 27 25–44.

    Google Scholar 

  • Natarajan M, Bhaskar Rao B, Parthasarathy R, Anil K and Gopalan K 1994 2.0 ga old pyroxenite-carbonatite complex of Hogenakal, Tamil Nadu, south India; Precamb. Res. 65 167–181.

    Google Scholar 

  • Nelson D R 1989 Isotopic characteristics and petrogenesis of the lamproite and kimberlites of central west Greenland; Lithos 22 265–274.

    Google Scholar 

  • Ottonello G, Piccardo G B, Mazzucetelli A and Cummino F 1978 Clinopyroxeneorthopyroxene major and rare earth elements partitioning in spinel peridotite xenoliths from Assab (Ethiopia); Geochim. Cosmochim. Acta 42 1817–1828.

    Google Scholar 

  • Pandey B K, Gupta J N, Sharma K J and Sastri C A 1997 Sm–Nd, Pb–Pb and Rb–Sr geochronology and petrogenesis of the mafic dyke swarm of Mahbubnagar, south India: Implications for Paleoproterozoic crustal evolution of the eastern Dharwar craton; Precamb. Res. 84 181–196.

    Google Scholar 

  • Pandey A, Chalapathi Rao N V, Pandit D, Pankaj P, Pandey R, Sahoo S and Kumar A 2017a Subduction-tectonics in the evolution of the eastern Dharwar craton, southern India: Insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin; Precamb. Res. 298 235–251.

    Google Scholar 

  • Pandey A, Chalapathi Rao N V, Chakrabarti R, Pandit D, Pankaj P, Kumar A and Sahoo S 2017b Petrogenesis of a Mesoproterozoic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field, southern India: Geochemical and Sr-Nd isotopic evidence for a modified sub-continental lithospheric mantle source; Lithos 292–293 218–233.

    Google Scholar 

  • Pearce J A 2008 Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust; Lithos 100 14–48.

    Google Scholar 

  • Pearce J A and Cann J R 1973 Tectonic setting of basic volcanic rocks determined using trace element analysis; Earth Planet. Sci. Lett. 19 290–300.

    Google Scholar 

  • Pearce J A, van der Laan S R, Arculus R J, Murton B J, Ishii T, Peate D W and Parkinson I J 1992 Boninite and harzburgite from Leg (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction; In: Proceedings of the ocean drilling program, scientific results, Vol. 125, Ocean Drilling Program, College Station, TX, pp. 623–659.

  • Pettigrew N T and Hattori K H 2006 The Quetico intrusions of western superior province: Neo-Archean examples of Alaskan\(/\)Ural-type mafic-ultramafic intrusions; Precamb. Res. 149 21–42.

    Google Scholar 

  • Peucat J-J, Jayananda M, Chardon D, Capdevila R, Fanning Marc C and Paquette J-L 2013 The lower crust of Dharwar craton, south India: Patchwork of Archean granulitic domains; Precamb. Res. 227 4–29, https://doi.org/10.1016/j.precamres.2012.06.009.

    Article  Google Scholar 

  • Philpotts J A, Schnetzler C C and Thomas H H 1972 Petrogenetic implications of some: New geochemical data on eclogitic and ultrabasic inclusions; Geochim. Cosmochim. Acta 36 1131–1166.

    Google Scholar 

  • Polat A and Hofmann A W 2003 Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland; Precamb. Res. 126 197–218.

    Google Scholar 

  • Polat A and Kerrich R 2000 Archean greenstone belt volcanism and the continental growth-mantle evolution connection: Constraints from Th-U-Nb-LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada; Earth Planet. Sci. Lett. 175 41–54.

    Google Scholar 

  • Radhakrishna B P and Naqvi S M 1986 Precambrian continental crust of India and its evolution; J. Geol. 94 145–166, https://doi.org/10.1086/629020

    Article  Google Scholar 

  • Rajesh H M 2003 Outcrop-scale silicate liquid immiscibility from and alkali syenite (A type granitoid) –pyroxenite association near Puttetti, Trivandrum block, south India; Contrib. Mineral. Petrol. 145 612–627.

    Google Scholar 

  • Ramakrishnan M and Vaidyanadhan R 2008 Geology of India; Geol. Soc. India 556.

    Google Scholar 

  • Ram Mohan M, Piercey S J, Kamber B S and Sarma D S 2013 Subduction related tectonic evolution of the Neoarchean eastern Dharwar craton, southern India: New geochemical and isotopic constraints; Precamb. Res. 227 204–226.

    Google Scholar 

  • Rao A T and Raman C V 1979 Spinel bronzite pyroxenites from Vemparala, Andhra Pradesh; J. Geol. Soc. India 20 142–144.

    Google Scholar 

  • Rao A D P, Rao K N and Murthy Y G K 1988 Gabbro-anorthosite-pyroxenite complexes and alkaline rocks in Chimakurti-Elchuru area, Prakasam district, Andhra Pradesh; Rec. Geol. Surv. India 116 1–20.

    Google Scholar 

  • Rock N M S 1991 Lamprophyres; Blackie, London, 225p.

    Google Scholar 

  • Samuel V O, Kwon S, Santosh M and Sajeev K 2018 Garnet pyroxenite from Nilgiri Block, southern India: Vestiges of a Neoarchaen volcanic arc; Lithos 310–311 120–135.

    Google Scholar 

  • Sappin A A, Constantin M and Clark T 2012 Petrology of mafic and ultramafic intrusions from the Portneuf-Mauricie domain, Grenville Province, Canada: Implications for plutonic complexes in a proterozoic island arc; Lithos 154 277–295.

    Google Scholar 

  • Shaw D M 1970 Trace element fractionation during anatexis; Geochim. Cosmochim. Acta 41 237–243.

    Google Scholar 

  • Snoke A W, Quick J E and Bowman H R 1981 Bear mountain igneous complex, Klamath mountains, California: An ultrabasic to silicic calc-alkaline suite; J. Petrol. 22 501–552.

    Google Scholar 

  • Sobolev A V 2007 The amount of recycled crust in sources of mantle-derived melts; Science 316(5823) 412–417.

    Google Scholar 

  • Srivastava R and Sinha A K 2007 Nd and Sr isotope systematics and geochemistry of a plume-related early cretaceous alkaline-mafic ultramafic igneous complex from Jasra, Shillong plateau, northeastern India; Geol. Soc. Am. 430 815–830, https://doi.org/10.1130/2007.2430(37).

    Article  Google Scholar 

  • Su B X, Qin K Z, Sakyi P A, Malaviarachchi S P K, Liu P P, Tang D M, Xiao Q H, Sun H, Ma Y G and Mao Q 2012 Occurrence of an Alaskan-type complex in the Middle Tianshan Massif, Central Asian Orogenic Belt: Inferences from petrological and mineralogical studies; Int. Geol. Rev. 54 249–269.

    Google Scholar 

  • Su B X, Qin K Z, Zhou M F, Sakyi P A, Thakurta J, Tang D M, Liu P P, Xiao Q H and Sun H 2014 Petrological, geochemical and geochronological constraints on the origin of the Xiadong Ural-Alaskan type complex in NW China and tectonic implication for the evolution of southern Central Asian Orogenic Belt; Lithos 200–201 226–240.

    Google Scholar 

  • Sun C M and Bertrad J 1991 Geochemistry of clinopyroxenes in plutonic and volcanic sequences from the Yanbian Proterozoic ophiolites (Sichuan Province, China): petrogenetic and geotectonic implications; Schweiz. Mineral. Petrog. Mitt. 71 243–259.

    Google Scholar 

  • Sun S S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Magmatism in ocean basins (eds) Saunders A D and Norry M J, Geol. Soc. London, Spec. Publ. 42 313–345.

  • Swami Nath J, Ramakrishnan M and Viswanatha M N 1976 Dharwar stratigraphic model and Karnataka craton evolution; Rec. Geol. Surv. India 107 149–175.

    Google Scholar 

  • Tainton K M and McKenzie D 1994 The generation of kimberlites, lamproites, and their source rocks; J. Petrol. 35 787–817.

    Google Scholar 

  • Taylor H P Jr 1967 The zoned ultramafic complexes of southeastern Alaska, Part 4. III; In Ultramafic and related rocks (ed) Wyllie P J, New York, John Wiley 96–118.

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; Blackwell Scientific Publication, Carlton, 312p.

    Google Scholar 

  • Tessalina S G, Kreshimir N, Malitch K N, Augé T, Puchkov V N, Belousova E and McInnes B A 2016 Origin of the Nizhny Tagil clinopyroxenite-dunite Massif, Uralian Platinum Belt, Russia: Insights from PGE and Os isotope systematic; J. Petrol. 56 2297–2318.

    Google Scholar 

  • Tilhac R et al. 2017 Sources and timing of pyroxenite formation in the sub-arc mantle: Case study of the Cabo Ortegal Complex, Spain; Earth Planet. Sci. Lett.https://doi.org/10.1016/j.epsl.2017.07.017.

    Book  Google Scholar 

  • Velasco-Tapia F, Guevara M and Verma S P 2001 Evalution of concentration data in geochemical references materials; Chem. Erde – Geochem. 61(2) 69–91.

    Google Scholar 

  • Weaver B L and Tarney J 1984 Empirical approach to estimating the composition of the continental crust; Nature 310 575–577.

    Google Scholar 

  • Yuan L, Zhang X, Yang Z, Lu Y and Chen H 2017 Paleoproterozoic Alskan-type ultramafic-mafic intrusions in the Zhongtiao mountain region, North China craton: Petrogenesis and tectonic implication; Precamb. Res. 296 39–61.

    Google Scholar 

  • Zhang C L, Yang D S, Wang H Y, Takahashi Y and Ye H M 2011 Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: Two phases of mafic igneous activity with different mantle sources; Gondwana Res. 19 177–190.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Head of the department of Geology, BHU for the support. This work is an outcome of a major project (IR/S4/ESF-18/2011 dated 12.11.2013) on the evolution of the mantle beneath the Indian cratons and mobile belts sanctioned to NVCR by DST-SERB, New Delhi. RKG is thankful to the UGC for financial support. The authors gratefully acknowledge the insightful reviews by two anonymous journal reviewers and the useful suggestions by the handling editor Prof. R Bhutani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N V Chalapathi Rao.

Additional information

Corresponding Editor: Rajneesh Bhutani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, R.K., Pankaj, P., Pandit, D. et al. Pyroxenite dykes with petrological and geochemical affinities to the Alaskan-type ultramafics at the northwestern margin of the Cuddapah basin, Dharwar craton, southern India: Tectonomagmatic implications. J Earth Syst Sci 128, 114 (2019). https://doi.org/10.1007/s12040-019-1153-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1153-2

Keywords

Navigation