Skip to main content
Log in

Macrocyclic butterfly iron cluster complexes: electrochemical investigations

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The article primarily highlights the electrocatalytic activity towards proton reduction of macrocyclic tetranuclear iron complexes [Fe2(μ-S(CH2)nS-μ)(CO)6]2 (n = 4, 1 and n = 6, 2) with both acetic acid and trifluoroacetic acid as proton sources. Further, the electrochemical results have been compared with the analogous pentanedithiolate-bridged tetranuclear complex, [Fe2(μ-S(CH2)5S-μ)(CO)6]2 A. The turnover frequency (TOF, acetic acid) for complexes 1 and 2 was found to be 5.7 h−1 and 9.1 h−1, respectively. An ECEC catalytic cycle (acetic acid) has been proposed for the tetranuclear iron complexes based on the experimental data and known literature.

Graphic abstract

The article primarily highlights the electrocatalytic activity towards proton reduction for macrocyclic tetranuclear iron complexes [Fe2(μ-S(CH2)6S-μ)(CO)6]2, (n = 4 and 6) 1 and 2. Further comparisons have been made with the analogous pentanedithiolate-bridged complex, [Fe2(μ-S(CH2)5S-μ)(CO)6]2 A. The influence on electrochemical properties was noted with an increase in chain length of the dithiols from n = 4 to 6 in the macrocyclic complexes, which is supported by both cyclic voltammetry and bulk electrolysis measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 2

Similar content being viewed by others

References

  1. (a) Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K and Iwashita N 2007 Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation Chem. Rev. 107 3904; (b) Cammack R, Frey M and Robson R 2001 Hydrogen as a Fuel: Learning from Nature (London and New York: Taylor & Francis)

  2. (a) Wittkamp F, Senger M, Stripp S T and Apfel U P 2018 [FeFe]-Hydrogenases: recent developments and future perspectives Chem. Commun. 54 5934; (b) Schilter D, Camara J M, Huynh M T, Hammes-Schiffer S and Rauchfuss T B 2016 Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides Chem. Rev. 116 8693; (c) Li Y and Rauchfuss T B 2016 Synthesis of Diiron(I) Dithiolato Carbonyl Complexes Chem. Rev. 116 7043

  3. (a) Figliola C, Male L, Horton P N, Pitak M B, Coles S J, Horswell S L and Grainger R S 2014 [FeFe]-Hydrogenase Synthetic Mimics Based on Peri-Substituted Dichalcogenides Organometallics 33 4449; (b) Hsieh C H, Erdem Ö F, Harman S D, Singleton M L, Reijerse E, Lubitz W, Popescu C V, Reibenspies J H, Brothers S M, Hall M B and Darensbourg M Y 2012 Structural and Spectroscopic Features of Mixed Valent FeIIFeI Complexes and Factors Related to the Rotated Configuration of Diiron Hydrogenase J. Am. Chem. Soc. 134 13089; (c) Wright R J, Lim C and Tilley T D 2009 Diiron Proton Reduction Catalysts Possessing Electron-Rich and Electron-Poor Naphthalene-1,8-dithiolate Ligands Chem. Eur. J. 15 8518

  4. (a) Natarajan M, Faujdar H, Mobin S M, Stein M and Kaur-Ghumaan S 2017 Mononuclear Iron Carbonyl Complex [Fe(μ-bdt)(CO)2(PTA)2] with bulky phosphine ligand: A model for the [FeFe] hydrogenase enzyme active site with an inverted redox potential Dalton Trans. 46 10050; (b) Weber K, Weyhermüller T, Bill E, Erdem Ö F, and Lubitz W 2015 Design and Characterization of Phosphine Iron Hydrides: Toward Hydrogen-Producing Catalysts Inorg. Chem. 54 6928; (c) Orthaber A, Karnahl M, Tschierlei S, Streich D, Stein M and Ott S 2014 Coordination and conformational isomers in mononuclear iron complexes with pertinence to the [FeFe] hydrogenase active site Dalton Trans. 43 4537; (d) Dey S, Das P K and Dey A 2013 Mononuclear iron hydrogenase Coord. Chem. Rev. 257 42

  5. (a) Ghosh S, Basak-Modi S, Richmond M G, Nordlander E and Hogarth G 2018 Electrocatalytic proton reduction by thiolate-capped triiron clusters [Fe3(CO)93-SR)(μ-H)] (R=iPr, tBu) Inorg. Chim. Acta 480 47; (b) Lunsford A M, Beto C C, Ding S, Erdem Ö F, Wang N, Bhuvanesh N, Hall M B and Darensbourg M Y 2016 Cyanide-bridged iron complexes as biomimetics of tri-iron arrangements in maturases of the H cluster of the di-iron hydrogenase Chem. Sci. 7 3710; (c) Beaume L, Clémancey M, Blondin G, Greco C, Pétillon F Y, Schollhammer P and Talarmin J 2014 New Systematic Route to Mixed-Valence Triiron Clusters Derived from Dinuclear Models of the Active Site of [Fe−Fe]-Hydrogenases Organometallics 33 6290; (d) Rahaman A, Ghosh S, Unwin D G, Basak-Modi S, Holt K B, Kabir S E, Nordlander E, Richmond M G and Hogarth G 2014 Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe3(CO)7(μ-edt)2] and Phosphine Derivatives [Fe3(CO)7−x(PPh3)x(μ-edt)2] (x=1, 2) and [Fe3(CO)52-diphosphine)(μ-edt)2] as Proton Reduction Catalysts Organometallics 33 1356

  6. (a) Abul-Futouh H, Almazahreh L R, Harb M K, Görls H, El-khateeb M and Weigand W 2017 [FeFe]-Hydrogenase H-Cluster Mimics with Various -S(CH2)nS- Linker Lengths (n=2−8): A Systematic Study Inorg. Chem. 56 10437; (b) Abul-Futouh H, Görls H and Weigand W 2017 A new macrocyclic [FeFe]-hydrogenase H cluster model Phosphorus Sulfur Silicon Relat. Elem. 192 634; (c) Abul-Futouh H, Almazahreh L R, Sakamoto T, Stessman N Y T, Lichtenberger D L, Glass R S, Görls H, Elkhateeb M, Schollhammer P, Mloston G and Weigand W 2017 [FeFe]-Hydrogenase H-Cluster Mimics with Unique Planar μ-(SCH2)2ER2 Linkers (E=Ge and Sn) Chem. Eur. J. 23 346

  7. Liu Y C, Tu L K, Yen T H, Lee G H and Chiang M H 2011 Influences on the rotated structure of diiron dithiolate complexes: electronic asymmetry vs. secondary coordination sphere interaction Dalton Trans. 40 2528

  8. Apfel U P, Halpin Y, Görls H, Vos J G, Schweizer B, Linti G and Weigand W 2007 Synthesis and Characterization of Hydroxy-Functionalized Models for the Active Site in Fe-Only-Hydrogenases Chem. Biodivers. 4 2138

    CAS  Google Scholar 

  9. Zhang Y, Si Y T, Hu M Q, Chen C N and Liu Q T 2007 Bis(μ4-butane-1,4-dithiolato)bis[hexacarbonyldiiron(II)(Fe-Fe)] Acta Cryst. C63 499

  10. Song L C, Gao J, Wang H T, Hua Y J, Fan H T, Zhang X G and Hu Q M 2006 Synthesis and Structural Characterization of Metallocrown Ethers Containing Butterfly Fe2S2 Cluster Cores. Biomimetic Hydrogen Evolution Catalyzed by Fe2(μ-SCH2CH2OCH2CH2S-μ)(CO)6 Organometallics 25 5724

  11. Johnson S L, Gerasimchuk N N and Mebi C A 2018 Cyclic tetranuclear iron-carbonyl complex containing thiobisbenzenethiolate ligands: Synthesis and structural characterization Inorg. Chim. Acta 477 306

    CAS  Google Scholar 

  12. Song L C, Qi C H, Bao H L, Fang X N and Song H B 2012 Synthetic and Structural Investigations on Some New 1,2,4,5-(CH2)4C6H2 Moiety-Containing Butterfly Fe/S Cluster Complexes from Reactions of Tetrathiol 1,2,4,5-(HSCH2)4C6H2 with Fe3(CO)12 or with Fe3(CO)12 in the Presence of Et3N Organometallics 31 5358

  13. Chen L, Wang M, Gloaguen F, Zheng D, Zhang P and Sun L 2012 Multielectron‐Transfer Templates via Consecutive Two‐Electron Transformations: Iron-Sulfur Complexes Relevant to Biological Enzymes Chem. Eur. J. 18 13968

  14. (a) Li Y L, Xie B, Zou L K, Lin X and Zhu S S 2013 Synthesis, Characterization, and X-ray Crystal Structure of Macrocyclic Nickel/Iron/Sulfur Cluster Complexes Z. Anorg. Allg. Chem. 639 1011; (b) Song L C, Li Y L, Li L, Gu Z C and Hu Q M 2010 Synthetic and Structural Investigations of Linear and Macrocyclic Nickel/Iron/Sulfur Cluster Complexes Inorg. Chem. 49 10174; (c) Song L C, Fang X N, Li C G, Yan J, Bao H L and Hu Q M 2008 Novel μ-CO-Containing Butterfly Fe/S Cluster Anions Generated from Tetrathiols, Fe3(CO)12, and Et3N: Their Reactions with Electrophiles To Give Neutral Butterfly Fe/S Cluster Complexes Organometallics 27 3225; (d) Song L C, Fan H T, Hu Q M, Yang Z Y, Sun Y and Gong F H 2003 Formation and Chemical Reactivities of a New Type of Double-Butterfly [{Fe2(μ-CO)(CO)6}2(μ-SZS-μ)]2-: Synthetic and Structural Studies on Novel Linear and Macrocyclic Butterfly Fe/E (E=S, Se) Cluster Complexes Chem. Eur. J. 9 170

  15. (a) Karnahl M, Orthaber A, Tschierlei S, Nagarajan L and Ott S 2012 Structural and spectroscopic characterization of tetranuclear iron complexes containing a P R2 N Ph2 bridge J. Coord. Chem. 65 2713; (b) Song L C, Gao W, Luo X, Wang Z X, Sun X J and Song H B 2012 Synthesis, Characterization, and Electrochemical Properties of Benzyloxy-Functionalized Diiron 1,3-Propanedithiolate Complexes Relevant to the Active Site of [FeFe]-Hydrogenases Organometallics 31 3324; (c) Wen N, Xu F, Feng Y and Du S 2011 A new cumulene diiron complex related to the active site of Fe-only hydrogenases and its phosphine substituted derivatives: Synthesis, electrochemistry and structural characterization J. Inorg. Biochem. 105 1123; (d) Liu X F and Yin B S 2010 Synthesis and structural characterization of a diiron propanedithiolate complex [(μ-PDT)Fe2(CO)5]2[(η5-Ph2PC5H4)2Fe] containing a bidentate phosphine ligand 1,1’-bis(diphenylphosphino)ferrocene J. Coord. Chem. 63 4061

  16. Liu Y C, Tu L K, Yen T H, Lee G H, Yang S T and Chiang M H 2010 Secondary Coordination Sphere Interactions within the Biomimetic Iron Azadithiolate Complexes Related to Fe-Only Hydrogenase: Dynamic Measure of Electron Density about the Fe Sites Inorg. Chem. 49 6409

    CAS  Google Scholar 

  17. Chen L, Wang M, Gloaguen F, Zheng D, Zhang P and Sun L 2013 Tetranuclear Iron Complexes Bearing Benzenetetrathiolate Bridges as Four-Electron Transformation Templates and Their Electrocatalytic Properties for Proton Reduction Inorg. Chem. 52 1798

    CAS  Google Scholar 

  18. Gao W, Liu J, Ma C, Weng L, Jin K, Chen C, Åkermark B and Sun L 2006 Synthesis, structures and electrochemical properties of amino-derivatives of diiron azadithiolates as active site models of Fe-only hydrogenase Inorg. Chim. Acta 359 1071

    CAS  Google Scholar 

  19. Gao W, Liu J, Åkermark B and Sun L 2006 Bidentate Phosphine Ligand Based Fe2S2-Containing Macromolecules: Synthesis, Characterization, and Catalytic Electrochemical Hydrogen Production Inorg. Chem. 45 9169

    CAS  Google Scholar 

  20. Gao W, Ekström J, Liu J, Chen C, Eriksson L, Weng L, Åkermark B and Sun L 2007 Binuclear Iron-Sulfur Complexes with Bidentate Phosphine Ligands as Active Site Models of Fe-Hydrogenase and Their Catalytic Proton Reduction Inorg. Chem. 46 1981

    CAS  Google Scholar 

  21. Natarajan M, Kaim V, Kumar N and Kaur-Ghumaan S 2018 A tetranuclear iron complex: substitution with triphenylphosphine ligand and investigation into electrocatalytic proton reduction J. Chem. Sci. 130 126

    Article  Google Scholar 

  22. Chiang M H, Liu Y C, Yang S T and Lee G H 2009 Biomimetic Model Featuring the NH Proton and Bridging Hydride Related to a Proposed Intermediate in Enzymatic H2 Production by Fe-Only Hydrogenase Inorg. Chem. 48 7604

    CAS  Google Scholar 

  23. Teo B K, Wudl F, Hauser J J and Kruger A 1977 Reactions of tetrathionaphthalene with transition metal carbonyls. Synthesis and characterization of two new organometallic semiconductors (C10H4S4Ni)x and [C10H4S4Co2(CO)2]x and a tetrairon cluster C10H4S4Fe4(CO)12 J. Am. Chem. Soc. 99 4862

  24. Song L C, Fan H T and Hu Q M 2002 The First Example of Macrocycles Containing Butterfly Transition Metal Cluster Cores via Novel Tandem Reactions J. Am. Chem. Soc. 124 4566

    Article  CAS  Google Scholar 

  25. Chong D, Georgakaki I P, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga M P and Darensbourg M Y 2003 Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships Dalton Trans. 4158

  26. Petro B J, Vannucci A K, Lockett L T, Mebi C, Kottani R, Gruhn N E, Nichol G S, Goodyer P A J, Evans D H, Glass R S and Lichtenberger D L 2008 Photoelectron spectroscopy of dithiolatodiironhexacarbonyl models for the active site of [Fe–Fe] hydrogenases: Insight into the reorganization energy of the “rotated” structure in the enzyme J. Mol. Struct. 890 281

    Article  CAS  Google Scholar 

  27. Elgrishi N, Rountree K J, McCarthy B D, Rountree E S, Eisenhart T T and Dempsey J L 2018 A Practical Beginner’s Guide to Cyclic Voltammetry J. Chem. Educ. 95 197

    Article  CAS  Google Scholar 

  28. Rountree E S, McCarthy B D, Eisenhart T T and Dempsey J L 2014 Evaluation of Homogeneous Electrocatalysts by Cyclic Voltammetry Inorg. Chem. 53 9983

    CAS  Google Scholar 

  29. Connor G P, Mayer K J, Tribble C S and McNamara W R 2014 Hydrogen Evolution Catalyzed by an Iron Polypyridyl Complex in Aqueous Solutions Inorg. Chem. 53 5408

    CAS  Google Scholar 

  30. Carroll M E, Barton B E, Rauchfuss T B and Carroll P J 2012 Synthetic Models for the Active Site of the [FeFe]-Hydrogenase: Catalytic Proton Reduction and the Structure of the Doubly Protonated Intermediate J. Am. Chem. Soc. 134 18843

    Article  CAS  Google Scholar 

  31. (a) Roy S, Mazinani S K S, Groy T L, Gan L, Tarakeshwar P, Mujica V and Jones A K 2014 Catalytic Hydrogen Evolution by Fe(II) Carbonyls Featuring a Dithiolate and a Chelating Phosphine Inorg. Chem. 53 8919; (b) McNamara W R, Han Z, Alperin P J, Brennessel W W, Holland P L and Eisenberg R 2011 A Cobalt-Dithiolene Complex for the Photocatalytic and Electrocatalytic Reduction of Protons J. Am. Chem. Soc. 133 15368

  32. (a) Costentin C, Dridi H and Savéant J M 2014 Molecular Catalysis of H2 Evolution: Diagnosing Heterolytic versus Homolytic Pathways J. Am. Chem. Soc. 136 13727; (b) Costentin C, Robert M and Savéant J M 2013 Catalysis of the electrochemical reduction of carbon dioxide Chem. Soc. Rev. 42 2423

  33. McCarthy B D, Martin D J, Rountree E S, Ullman A C and Dempsey J L 2014 Electrochemical Reduction of Brønsted Acids by Glassy Carbon in Acetonitrile-Implications for Electrocatalytic Hydrogen Evolution Inorg. Chem. 53 8350

    CAS  Google Scholar 

  34. Fourmond V, Jacques P A, Fontecave M and Artero V 2010 H2 Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation Inorg. Chem. 49 10338

    CAS  Google Scholar 

  35. Fu L Z, Zhou L L, Tang L Z, Zhang Y X and Zhan S Z 2015 A molecular iron(III) electrocatalyst supported by amine-bis(phenolate) ligand for water reduction Int. J. Hydrogen Energy 40 8688

    Article  CAS  Google Scholar 

  36. Costentin C, Drouet S, Robert M and Savéant J M 2012 Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis J. Am. Chem. Soc. 134 11235

  37. Artero V and Savéant J M 2014 Toward the rational benchmarking of homogeneous H2-evolving catalysts Energy Environ. Sci. 7 3808

    Article  CAS  Google Scholar 

  38. Hu C and Fan W Y 2019 Molybdenum carbonyl complexes as HER electrocatalysts Mol. Catal. 479 110615

    CAS  Google Scholar 

  39. Agarwal T and Kaur-Ghumaan S 2020 Mono- and dinuclear mimics of the [FeFe] hydrogenase enzyme featuring bis(monothiolato) and 1,3,5-triaza-7-phosphaadamantane ligand Inorg. Chim. Acta 504 119442

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Council of Scientific & Industrial Research (CSIR), India (01(2957)/18/EMR‐II) is gratefully acknowledged. SK-G is thankful to University of Delhi for the instrumental facilities. TA is grateful to University Grants Commission (UGC) for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kaur-Ghumaan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, T., Kaur-Ghumaan, S. Macrocyclic butterfly iron cluster complexes: electrochemical investigations. J Chem Sci 132, 125 (2020). https://doi.org/10.1007/s12039-020-01830-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01830-0

Keywords

Navigation