Skip to main content
Log in

Chromogenic and fluorogenic detection of selected anions by bis-terpyridine Fe(II) complex through displacement approach

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Abstract

This paper deals with synthesis, characterization and anion recognition properties of a homoleptic bis-terpyridine Fe(II) complex covalently coupled with diarylethene unit. The recognition event was examined in both organic as well as mixed aqueous–organic medium through different optical channels and spectroscopic techniques by taking advantage of metal–ligand interaction in the complex. The complex acts as sensor for \(\hbox {F}^{-}\), \(\hbox {OAc}^{-}\) and \(\hbox {CN}^{-}\) among the other studied anions (\(\hbox {F}^{-}\), \(\hbox {Cl}^{-}\), \(\hbox {Br}^{-}\), \(\hbox {I}^{-}\), \(\hbox {CN}^{-}\), \(\hbox {OAc}^{-}\), \(\hbox {H}_{2}\hbox {PO}_{4}^{-}\), \(\hbox {SCN}^{-}\), \(\hbox {BF}_{4}^{-}\) and \(\hbox {ClO}_{4}^{-})\) without selectivity. In contrast to acetonitrile, the complex acts as highly selective chromogenic and fluorogenic sensor for only \(\hbox {CN}^{-}\) in water. Detection limit of the metalloreceptor towards \(\hbox {CN}^{-}\) was determined from the absorption and emission titration data and the observed values lie in the order of \(10^{-9}\) M in acetonitrile and \(10^{-8}\) M in mixed aqueous–organic media.

Graphical Abstract

SYNOPSIS Anion sensing property of a bis-terpyridine Fe(II) complex was thoroughly investigated in both acetonitrile and water–acetonitrile (100:1, v/v) media through different optical channels and spectroscopic techniques. Interestingly, the complex acts as chromogenic and fluorogenic receptor for cyanide in predominantly aqueous medium with very low detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sessler J L, Gale P A and Cho W S 2006 Anion receptor chemistry (Cambridge, UK: Royal Society of Chemistry)

    Google Scholar 

  2. Supramolecular Chemistry of Anions 1997 A Bianchi, K Bowman-James and E Garcia-Espańa (Eds.) (New York: Wiley-VCH)

  3. Bowman-James K 2005 Alfred Werner Revisited: The coordination chemistry of anions Acc. Chem. Res. 38 671

    Article  CAS  PubMed  Google Scholar 

  4. Beer P D 1996 Anion selective recognition and optical/electrochemical sensing by novel transition-metal receptor systems Chem. Commun. 689

  5. Kulig K W 1991 Cyanide toxicity (Atlanta: U.S. Department of Health and Human Services)

    Google Scholar 

  6. Taylor J, Roney N, Fransen M E and Swarts S 2006 Toxicological profile for cyanide (Atlanta: DIANE Publishing)

    Google Scholar 

  7. Xu Z, Chen X, Kim H N and Yoon J 2010 Sensors for the optical detection of cyanide ion Chem. Soc. Rev. 39 127

    Article  CAS  PubMed  Google Scholar 

  8. Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P and Kumar S 2012 Chemodosimeters: an approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols Coord. Chem. Rev. 256 1992

    Article  CAS  Google Scholar 

  9. Wang F, Wang L, Chen X and Yoon J 2014 Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions Chem. Soc. Rev. 43 4312

    Article  CAS  PubMed  Google Scholar 

  10. Kubik S 2010 Anion recognition in water Chem. Soc. Rev. 39 3648

    Article  CAS  PubMed  Google Scholar 

  11. Sun W, Guo S, Hu C, Fan J and Peng X 2016 Recent development of chemosensors based on cyanine platforms Chem. Rev. 116 7768

    Article  CAS  PubMed  Google Scholar 

  12. Gunnlaugsson T, Glynn M, Tocci G M, Kruger P E and Pfeffer F M 2005 Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors Coord. Chem. Rev. 250 3094

    Article  CAS  Google Scholar 

  13. Sun S-S and Lees A J 2000 Advanced concepts in fluorescence sensing: part A: small molecule sensing Chem. Commun. 1687

  14. Saha S, Ghosh A, Mahato P, Mishra S, Mishra S K, Suresh E, Das S and Das A 2010 Specific recognition and sensing of \(\text{ CN }^{-}\) in sodium cyanide solution Org. Lett. 12 3406

    Article  CAS  PubMed  Google Scholar 

  15. Lee K-S, Kim H-J, Kim G-H, Shin I, Hong J-I 2008 Fluorescent chemodosimeter for selective detection of cyanide in water Org. Lett. 10 49

    Article  CAS  PubMed  Google Scholar 

  16. Santos-Figueroa L E, Moragues M E, Climent E, Agostini A, Martínez-Máñez R and Sancenón F 2013 Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011 Chem. Soc. Rev. 42 3489

    Article  CAS  PubMed  Google Scholar 

  17. Chung S-Y, Nam S-W, Lim J, Park S and Yoon J 2009 A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging Chem. Commun. 2866

  18. Bhalla V, Singh H and Kumar M 2012 Triphenylene based copper ensemble for the detection of cyanide ions Dalton Trans. 41 11413

    Article  CAS  PubMed  Google Scholar 

  19. Lou X, Zhang L, Qin J and Li Z 2008 An alternative approach to develop a highly sensitive and selective chemosensor for the colorimetric sensing of cyanide in water Chem. Commun. 5848

  20. Nguyen B T and Anslyn E V 2006 Indicator-displacement assays Coord. Chem. Rev. 250 3118

    Article  CAS  Google Scholar 

  21. Lou X, Ou D, Li Q and Li Z 2012 An indirect approach for anion detection: the displacement strategy and its application Chem. Commun. 48 8462

    Article  CAS  Google Scholar 

  22. Divya K P, Sreejith S, Balakrishna B, Jayamurthy P, Anees P and Ajayaghosh A 2010 A \(\text{ Zn }^{2+ }\)specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples Chem. Commun. 6069

  23. Shaily K A and Ahmed N 2017 Indirect approach for \(\text{ CN }^{-}\) detection: development of “Naked-Eye” Hg\(^{2+}\)-induced turn-off fluorescence and turn-on cyanide sensing by the Hg\(^{2+}\) displacement approach Ind. Eng. Chem. Res. 56 6358

    Article  CAS  Google Scholar 

  24. La M, Hao Y, Wang Z, Han G-C and Qu L 2016 Selective and sensitive detection of cyanide based on the displacement strategy using a water-soluble fluorescent probe J. Anal. Methods Chem. 2016 1

    Article  CAS  Google Scholar 

  25. Chow C-F, Ho P-Y, Wong W-L and Gong C-B 2015 A multifunctional bimetallic molecular device for ultrasensitive detection, naked-eye recognition, and elimination of cyanide ions Chem. Eur. J. 21 12984

    Article  CAS  PubMed  Google Scholar 

  26. Maurya N, Bhardwaj S and Singh A K 2017 Selective colorimetric and fluorescence ‘turn on’ sensor for \(\text{ Ag }^{+}\) and in-situ sensing of \(\text{ CN }^{-}\) (off-on-off) via displacement approach Mater. Sci Eng. C  74 55

    Article  CAS  Google Scholar 

  27. Martínez-Máñez R and Sancenón F 2003 Fluorogenic and chromogenic chemosensors and reagents for anions Chem. Rev. 103 4419

    Article  CAS  PubMed  Google Scholar 

  28. Beer P D and Bayly S R 1998 Transition-metal receptor systems for the selective recognition and sensing of anionic guest species Acc. Chem. Res. 31 71

    Article  CAS  Google Scholar 

  29. Peŕez J and Riera L 2008 Stable metal-organic complexes as anion hosts Chem. Soc. Rev. 37 2658

    Article  CAS  Google Scholar 

  30. Amendola V and Fabbrizzi L 2009 Anion receptors that contain metals as structural units Chem. Commun. 513

  31. Paul B D, Szemes F, Balzani V, Salà, Drew M G B, Dent S W and Maestri M 1997 Anion selective recognition and sensing by novel macrocyclic transition metal receptor systems. \(^{1}\)H NMR, electrochemical, and photophysical investigations J. Am. Chem. Soc. 49 11864

    Google Scholar 

  32. Cui Y, Niu Y-L, Cao M L, Wang K, Mo H-J, Zhong Y-R and Ye B-H 2008 Ruthenium(II) \(2,2^\prime \)-bibenzimidazole complex as a second-sphere receptor for anions interaction and colorimeter Inorg. Chem. 47 5616

    Article  CAS  PubMed  Google Scholar 

  33. Mo H-J, Shen Y and Ye B-H 2012 Selective recognition of cyanide anion via formation of multipoint NH and phenyl CH hydrogen bonding with acyclic ruthenium bipyridine imidazole receptors in water Inorg. Chem. 51 7174

    Article  CAS  PubMed  Google Scholar 

  34. Bar M, Maity D, Das K and Baitalik S 2017 Asymmetric bimetallic ruthenium(II) complexes selectively sense cyanide in water through significant modulation of their ground and excited state properties Sens. Actuat. B 251 208

    Article  CAS  Google Scholar 

  35. Mardanya S, Karmakar S, Bar M and Baitalik S 2015 Pyrene-biimidazole based Ru(II) and Os(II) complexes as highly efficient probes for the visible and near infrared detection of cyanide in aqueous media Dalton Trans. 44 21053

    Article  CAS  PubMed  Google Scholar 

  36. Maity D, Das S, Mardanya S and Baitalik S 2013 Synthesis, structural characterization, and photophysical, spectroelectrochemical, and anion-sensing studies of heteroleptic ruthenium(II) complexes derived from 4\(^\prime \)-polyaromatic-substituted terpyridine derivatives and 2,6-bis(benzimidazol-2-yl)pyridine Inorg. Chem. 52 6820

    Article  CAS  PubMed  Google Scholar 

  37. Maity D, Bhaumik C, Mondal D and Baitalik S 2014 Photoinduced intramolecular energy transfer and anion sensing studies of isomeric Ru\(^{{\rm II}}\)Os\(^{{\rm II}}\) complexes derived from an asymmetric phenanthroline–terpyridine bridge Dalton Trans. 43 1829

    Article  CAS  PubMed  Google Scholar 

  38. Mardanya S, Karmakar S, Maity D and Baitalik S 2015 Ruthenium(II) and Osmium(II) mixed chelates based on pyrenyl- pyridylimidazole and 2,2\(^\prime \)-bipyridine ligands as efficient DNA intercalators and anion sensors Inorg. Chem. 54 513

    Article  CAS  PubMed  Google Scholar 

  39. Chowdhury B, Sinha S and Ghosh P 2016 Selective sensing of phosphates by a new bis-heteroleptic Ru\(^{{\rm II}}\) complex through halogen bonding: A superior sensor over its hydrogen-bonding asnalogue Chem. Eur. J.  22 18051

    Article  CAS  PubMed  Google Scholar 

  40. Chowdhury B, Dutta R, Khatua S and Ghosh P 2016 A cyanuric acid platform based tripodal bis-heteroleptic Ru(II) complex of click generated ligand for selective sensing of phosphates via C-H anion interaction Inorg. Chem. 55 259

    Article  CAS  PubMed  Google Scholar 

  41. Pott K T, Usifer D A and Abruna H D 1987 4-Vinyl-, 6-Vinyl-, and 4\(^{\prime }\)-Viny1-2,2\(^{\prime }\):6\(^{\prime }\),2\(^{\prime \prime }\) terpyridinyl ligands: their synthesis and the electrochemistry of their transition-metal coordination complexes J. Am. Chem. Soc. 109 3961

    Article  Google Scholar 

  42. Spahni W and Calzaferri G 1984 Synthese von para -substituierten phenyl-terpyridin liganden Helv. Chim. Acta 67 450

    Article  CAS  Google Scholar 

  43. Winker J R and Sutin N 1987 Lifetimes and spectra of the excited states of cis dicyanobis(2,2\(^{\prime }\)-bipyridine)iron(II) and -ruthenium(II) in solution Inorg. Chem. 26 220

    Article  Google Scholar 

  44. Creutz C, Chou M, Netzel T L, Okumura M and Sutin N 1980 Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II) J. Am. Chem. Soc. 102 1309

    Article  CAS  Google Scholar 

  45. Bergkamp M A, Guetlich P, Netzel T L and Sutin N 1983 Lifetimes of the ligand-to-metal charge-transfer excited states of iron(III) and osmium(III) polypyridine complexes. Effects of isotopic substitution and temperature J. Phys. Chem. 87 3877

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support received from the Department of Science and Technology, New Delhi, India [Grant No. (EMR/2015/001163 (SERB)] is gratefully acknowledged. TCSPC facility under the DST-PURSE program of Department of Chemistry (JU) is also gratefully acknowledged. S. Mukherjee and P. Pal gratefully acknowledge CSIR for their senior research fellowships and M. Bar acknowledges UGC for his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Baitalik.

Additional information

Special Issue on Modern Trends in Inorganic Chemistry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 511 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Pal, P., Bar, M. et al. Chromogenic and fluorogenic detection of selected anions by bis-terpyridine Fe(II) complex through displacement approach. J Chem Sci 130, 84 (2018). https://doi.org/10.1007/s12039-018-1484-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1484-6

Keywords

Navigation