Skip to main content
Log in

Covalent crosslinking of carbon nanostructures

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Covalent crosslinking of carbon nanostructures of different dimensionalities such as nanodiamond, single walled carbon nanotubes (SWNTs) and graphene can yield useful homo- and hetero-binary conjugates. Binary conjugation of the nanocarbons has been achieved by introducing symmetrical amide-linkages between acid (-COOH) functionalized nanocarbons and a diamine-linker. The binary conjugates have been characterized by using transmission electron microscopy as well as infrared, Raman and photoluminescence spectroscopies. Dispersions of covalently crosslinked binary conjugates of nanocarbons could be obtained in dimethyl formamide (DMF). Composites of the binary conjugates with polymer can be readily prepared by using the DMF suspensions.

Covalent crosslinking of carbon nanostructures of different dimensionalities such as nanodiamond, single-walled carbon nanotubes (SWNTs) and graphene yield useful homo- and hetero-binary conjugates. Dispersions of covalently crosslinked binary conjugates of nanocarbons could be obtained in dimethyl formamide (DMF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Evelyn M P 1998 Surface Properties of diamond. In Handbook of industrial diamonds and diamond films (eds.) M A Prelas, G Popovici and L K Bigelow (New York: Marcel Dekker Inc.) p 89

    Google Scholar 

  2. Dolmatov V Y 2001 Russ. Chem. Rev. 70 607

    Article  CAS  Google Scholar 

  3. Zhu W, Kochanski G P and Jin S 1998 Science 282 1471

    Article  CAS  Google Scholar 

  4. Yu S J, Kang M W, Chang H C, Chen K M and Yu Y C 2005 J. Am. Chem. Soc. 127 17604

    Article  CAS  Google Scholar 

  5. Fu C C, Lee H Y, Chen K, Lim T S, Wu H Y, Lin P K, Wei P K, Tsao P H, Chang H C and Fann W 2007 Proc. Natl. Acad. Sci. USA 104 727

    Article  CAS  Google Scholar 

  6. Zhao W, Qiu J X Q and Chen H Y 2006 Biosens. Bioelectron. 22 649

    Article  CAS  Google Scholar 

  7. Rao C N R and Govindaraj A 2005 Nanotubes and Nanowires; Royal Society of Chemistry: Cambridge, UK

    Google Scholar 

  8. Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes, Imperial College Press: London, UK

    Book  Google Scholar 

  9. (a) Dai H 2002 Acc. Chem. Res. 35 1035; (b) Banerjee S, Hemraj-Benny T and Wong S-S 2005 Adv. Mater. 17 17

  10. Rao C N R, Sood A K, Subrahmanyam K S and Govindaraj A 2009 Angew. Chem. Int. Ed. 48 7752

    Article  CAS  Google Scholar 

  11. Prasad K E, Das B, Maitra U, Ramamurty U and Rao C N R 2009 Proc. Natl. Acad. Sci. USA 106 13186

    Article  CAS  Google Scholar 

  12. Guglielmotti V, Chieppa S, Orlanducci S, Tamburri E, Toschi F, Terranova M L and Rossi M 2009 Appl. Phys. Lett. 95 222113

    Article  Google Scholar 

  13. Chiu P W, Duesburg G S, Wegiikowska U D and Roth S 2002 Appl. Phys. Lett. 80 3811

    Article  CAS  Google Scholar 

  14. Frehill F, Vos J G, Benrezzak S, Koós A A, Kónya Z, Rüther M G, Blau W J, Fonseca A, Nagy J B, Biró L P, Minett A I and Panhuis M 2002 J. Am. Chem. Soc. 124 13694

    Article  CAS  Google Scholar 

  15. Holzinger M, Steinmetz J, Samaille D, Glerup M, Paillet M, Bernier P, Ley L and Graupner R 2004 Carbon 42 941

    Article  CAS  Google Scholar 

  16. Avinash M B, Subrahmanyam K S, Sundarayya Y and Govindaraju T 2010 Nanoscale 2 1762

    Article  CAS  Google Scholar 

  17. Dresselhaus M S, Jorio A and Saito R 2010 Annu. Rev. Condens. Matter Phys. 1 89

    Article  CAS  Google Scholar 

  18. Dresselhaus M S and Eklund P C 2000 Adv. Phys. 49 705

    Article  CAS  Google Scholar 

  19. Das B, Voggu R, Rout C S and Rao C N R 2008 Chem. Commun. 41 5155

    Article  Google Scholar 

  20. Weglikowska U D, Benoit J M, Chiu P W, Graupner R, Lebedkin S and Roth S 2002 Curr. Appl. Phys. 2 497

    Article  Google Scholar 

  21. Rao C N R, Biswas K, Subrahmanyam K S and Govindaraj A 2009 J. Mater. Chem. 19 2457

    Article  CAS  Google Scholar 

  22. Jaramillo D, Wheate N J, Ralph S F, Howard W A, Tor Y, Aldrich-Wright J R 2006 Inorg. Chem. 45 6004

    Article  CAS  Google Scholar 

  23. Maitra U, Gomathi A and Rao C N R 2008 J. Exp. Nanosci. 3 271

    Article  CAS  Google Scholar 

  24. Subrahmanyam K S, Ghosh A, Gomathi A, Govindaraj A and Rao C N R 2009 Nanosci. Nanotech. Lett. 1 28

    Article  CAS  Google Scholar 

  25. Rao C N R, Sood A K, Voggu R, Subrahmanyam K S 2010 J. Phys. Chem. Lett. 1 572

    Article  CAS  Google Scholar 

  26. Chung P-H, Perevedentseva E and Cheng C-L 2007 Surf. Sci. 601 3866

    Article  CAS  Google Scholar 

  27. Vlasov I I, Shenderova O, Turner S, Lebedev O I, Basov A A, Sildos I, Rähn M, Shiryaev A A and Tendeloo G V 2010 Small 6 687

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T GOVINDARAJU.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 4.42 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MAITRA, U., PANDEESWAR, M. & GOVINDARAJU, T. Covalent crosslinking of carbon nanostructures. J Chem Sci 124, 551–556 (2012). https://doi.org/10.1007/s12039-012-0255-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-012-0255-z

Keywords

Navigation