Skip to main content
Log in

Interplay between multiple length and time scales in complex chemical systems

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of processes occurring over this broad time and space window are frequently coupled to give rise to the control necessary to ensure specificity and the uniqueness of the chemical phenomena. A combination of experimental, theoretical and computational techniques that can address a multiplicity of length and time scales is required in order to understand and predict structure and dynamics in such complex systems. This review highlights recent experimental developments that allow one to probe structure and dynamics at increasingly smaller length and time scales. The key theoretical approaches and computational strategies for integrating information across time-scales are discussed. The application of these ideas to understand phenomena in various areas, ranging from materials science to biology, is illustrated in the context of current developments in the areas of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pople J 2003 Quantum chemical models in Nobel lectures; Chemistry 1996–2000 (ed.) I Grenthe (Singapore: World Publishing Co.)

    Google Scholar 

  2. Kohn W 2003 Electronic structure of matter — wave functions and density functionals in Nobel lectures; Chemistry 1996–2000 (ed.) I Grenthe (Singapore: World Publishing Co.)

    Google Scholar 

  3. Frenkel D and Smit B 2002 Understanding molecular simulations: from algorithms to applications (San Diego: Academic Press)

    Google Scholar 

  4. Hansen J P and Smit B 2006 Theory of simple liquids (San Diego: Academic Press)

    Google Scholar 

  5. Martin R M 2004 Electronic structure: basic theory and practical methods (Cambridge University Press)

  6. Roy R K, Krishnamurti S, Geerlings P and Pal S 1998 J. Phys. Chem. A102 3746

    Google Scholar 

  7. Mukherjee D and Pal S 1989 Adv. Quant. Chem. 20 291

    Article  CAS  Google Scholar 

  8. Marcus R A 2003 Electron transfer reactions in chemistry: theory and experiment in Nobel lectures; Chemistry 1996–2000 (ed.) B G Malmstorm (Singapore: World Publishing Co.)

    Google Scholar 

  9. Marcus R A 1965 J. Chem. Phys. 43 679

    Article  CAS  Google Scholar 

  10. Henzler-Wildman K A, Lei M, Thai V, Kerns J S, Karplus M and Kern D 2007 Nature 450 913

    Article  CAS  Google Scholar 

  11. Zewail A H 2000 J. Phys. Chem. A104 5660

    Google Scholar 

  12. Asplund M C, Zanni M T and Hochstrasser R M 2000 Proc. Natl. Acad. Sci. 97 8219

    Article  CAS  Google Scholar 

  13. Kling M F and Vrakking M J J 2008 Ann. Rev. Phys. Chem. 59 463

    Article  CAS  Google Scholar 

  14. Mukamel S, Abramavicius D, Yang L J, Zhuang W, Schweigert I V and Voronin D V 2009 Acc. Chem. Res. 43 553

    Article  Google Scholar 

  15. Moerner W E 2002 J. Phys. Chem. B106 910

    Google Scholar 

  16. Lu H P, Xun L and Xie X S 1998 Science 282 1877

    Article  CAS  Google Scholar 

  17. Weiss S 1999 Science 283 1676

    Article  CAS  Google Scholar 

  18. Landman U 2005 Proc. Natl. Acad. Sci. 102 6671

    Article  CAS  Google Scholar 

  19. Brandt A, Bernholc J and Binder K (eds) 2001 Multiscale computational methods in chemistry and physics (IOS Press)

  20. Lu G and Kaxiras E An overview of multiscale simulations of materials; arXiv: cond-mat/0401073

  21. McCullagh M, Prytkova T, Tonzani S, Winter N D and Schatz G C 2008 J. Phys. Chem. B112 10388

    Google Scholar 

  22. Murtola T, Bunker A, Vattulainen I, Deserno M and Kattunen M 2009 Phys. Chem. Chem. Phys. 11 1869

    Article  CAS  Google Scholar 

  23. Stone A J 1997 Theory of intermolecular forces (Oxford University Press)

  24. Marrink S J, Risselada H J, Ye.mov S, Tieleman D P and de Vries A H 2007 J. Phys. Chem. B111 7812

    Google Scholar 

  25. Ballau. M and Likos C N 2004 Angew. Chem. Int. Ed. 43 2998

    Article  Google Scholar 

  26. Louis A A, Bolhuis P G, Hansen J P and Meijer E J 2000 Phys. Rev. Lett. 85 2522

    Article  CAS  Google Scholar 

  27. Car R and Parinello M 1985 Phys. Rev. Lett. 55 2471

    Article  CAS  Google Scholar 

  28. Farkas D, Willemann M and Hyde B 2005 Phys. Rev. Lett. 94 165502

    Article  CAS  Google Scholar 

  29. Abraham F F and Broughton J Q 1998 Comp. Mat. Sci. 10 1

    Article  CAS  Google Scholar 

  30. Li J, Van Vliet K J, Zhu T, Yip S and Suresh S 2002 Nature 418 307

    Article  CAS  Google Scholar 

  31. Debenedetti P G and Stillinger F H 2001 Nature 410 259

    Article  CAS  Google Scholar 

  32. Wales D J 2003 Energy landscapes: with applications to clusters, biomolecules and glasses (Cambridge University Press)

  33. Chakrabarti D and Bagchi B 2006 Proc. Natl. Acad. Sci. 103 7217

    Article  CAS  Google Scholar 

  34. Onuchic J N, Luthey-Schulten Z and Wolynes P G 1987 Ann. Rev. Phys. Chem. 48 545

    Article  Google Scholar 

  35. Dellago C, Bolhuis P G and Geissler P L 2002 Adv. Chem. Phys. 123 1

    Article  CAS  Google Scholar 

  36. Voter A F 1997 Phys. Rev. Lett. 78 3908

    Article  CAS  Google Scholar 

  37. Barducci A, Bussi G and Parrinello M 2008 Phys. Rev. Lett. 100 020603

    Article  Google Scholar 

  38. Voter A F, Montalenti F and Germann T C 2002 Ann. Rev. Mat. Res. 32 321

    Article  CAS  Google Scholar 

  39. Ross J 2008 J. Phys. Chem. A112 2134

    Google Scholar 

  40. Franks F (ed.) 1972 Water: a comprehensive treatise (Plenum Press)

  41. Bellissent-Funel M C (ed.) 1999 Hydration processes in biology (IOS Press)

  42. Tuckerman M E, Marx D, Klein M L and Parrinello M 1997 Science 275 817

    Article  CAS  Google Scholar 

  43. Chakravarty C 1997 Int. Rev. Phys. Chem. 16 421

    Article  CAS  Google Scholar 

  44. Lobban C, Finney J L and Kuhs W F 1998 Nature 391 268

    Article  CAS  Google Scholar 

  45. Mishima O and Stanley H E 1998 Nature 396 329

    Article  CAS  Google Scholar 

  46. Sadr-Lahijany M R, Scala A, Buldyrev S V and Stanley H E 1998 Phys. Rev. Lett. 81 4895

    Article  CAS  Google Scholar 

  47. Sharma R, Chakraborty S N and Chakravarty C 2006 J. Chem. Phys. 125 204501

    Article  Google Scholar 

  48. Kauzmann W 1959 Adv. Prot. Chem. 14 1

    Article  CAS  Google Scholar 

  49. Chandler D 2005 Nature 437 640

    Article  CAS  Google Scholar 

  50. Giovambattista N, Lopez C F, Rossky P J and Debenedetti P G 2008 Proc. Natl. Acad. Sci. USA 105 2274

    Article  CAS  Google Scholar 

  51. Nandi N and Bagchi B 1997 J. Phys. Chem. B101 10954

    Google Scholar 

  52. Pal S K, Peon J, Bagchi B and Zewail A 2002 J. Phys. Chem. B106 12376

    Google Scholar 

  53. Bagchi B 2005 Chem. Rev. (Review) 105 3197

    Article  CAS  Google Scholar 

  54. Bhattacharyya K 2008 Chem. Commun. 25 2848

    Article  Google Scholar 

  55. Chandra A, Tuckerman M E and Marx D 2007 Phys. Rev. Lett. 99 145901

    Article  Google Scholar 

  56. Pal S, Maiti P K, Bagchi B and Hynes J T 2006 J. Phys. Chem. B110 26396

    Google Scholar 

  57. Debenedetti P G 1996 Metastable liquids: concepts and principles (Princeton: Princeton University Press)

    Google Scholar 

  58. Hecksher T, Nielsen A I, Olsen N B and Dyre J C 2008 Nat. Phys. 4 737

    Article  CAS  Google Scholar 

  59. Sastry S 2001 Nature 409 164

    Article  CAS  Google Scholar 

  60. Samanta A, Ali S M and Ghosh S K 2001 Phys. Rev. Lett. 87 245901

    Article  CAS  Google Scholar 

  61. Das S P 2004 Rev. Mod. Phys. 76 785

    Article  CAS  Google Scholar 

  62. Jacob D Stevenson, Jorg Schmalian and Peter G Wolynes 2006 Nat. Phys. 2 268

    Article  CAS  Google Scholar 

  63. An.nsen C B 1973 Science 181 223

    Article  Google Scholar 

  64. Dobson C M 2003 Nature 426 884

    Article  CAS  Google Scholar 

  65. Lazaridis T and Karplus M 2003 Biophys. Chem. 100 367

    Article  CAS  Google Scholar 

  66. Liu F, Du D, Fuller A A, Davoren J E, Wipf P, Kelly J W and Gruebele M 2008 Proc. Natl. Acad. Sci. 105 2369

    Article  CAS  Google Scholar 

  67. Khakshoor O and Nowick J S 2008 Curr. Opin. Struct. Biol. 12 722

    CAS  Google Scholar 

  68. Robinson J A 2008 Acc. Chem. Res. 41 1278

    Article  CAS  Google Scholar 

  69. Prince R B, Barnes S A and Moore J S 2000 J. Am. Chem. Soc. 122 2758

    Article  CAS  Google Scholar 

  70. Auer S and Frenkel D 2004 Annu. Rev. Phys. Chem. 55 333

    Article  CAS  Google Scholar 

  71. tenWolde P R and Frenkel D 1997 Science 277 1975

    Article  CAS  Google Scholar 

  72. Ghiringhelli L M, Valeriani C, Meijer E J and Frenkel D 2007 Phys. Rev. Lett. 99 055702

    Article  CAS  Google Scholar 

  73. Bhimalapuram P, Chakrabarty S and Bagchi B 2007 Phys. Rev. Lett. 98 206104

    Article  Google Scholar 

  74. Whitesides G M and Grzybowski B 2002 Science 295 2418

    Article  CAS  Google Scholar 

  75. Shevchenko E V, Talapin D V, Kotov N A, O’Brien S and Murray C B 2006 Nature 439 55

    Article  CAS  Google Scholar 

  76. Min Y, Akbulut M, Kristiansen K, Golan Y and Israelachvili J 2008 Nat. Mat. 7 527

    Article  CAS  Google Scholar 

  77. Glotzer S C and Solomon M J 2007 Nat. Mat. 6 557

    Article  Google Scholar 

  78. Attinger E S and Koumoutsakos P 2004 Multiscale modeling and simulation (Springer)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charusita Chakravarty.

Additional information

Reproduced from ‘Current Trends in Science’ Platinum Jubilee Special Publication, Indian Academy of Sciences, Bangalore, 2009, pp. 67–78 with minor editorial changes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagchi, B., Chakravarty, C. Interplay between multiple length and time scales in complex chemical systems. J Chem Sci 122, 459–470 (2010). https://doi.org/10.1007/s12039-010-0081-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-010-0081-0

Keywords

Navigation