Skip to main content

Advertisement

Log in

Identification and annotation of promoter regions in microbial genome sequences on the basis of DNA stability

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Analysis of various predicted structural properties of promoter regions in prokaryotic as well as eukaryotic genomes had earlier indicated that they have several common features, such as lower stability, higher curvature and less bendability, when compared with their neighboring regions. Based on the difference in stability between neighboring upstream and downstream regions in the vicinity of experimentally determined transcription start sites, a promoter prediction algorithm has been developed to identify prokaryotic promoter sequences in whole genomes. The average free energy (E) over known promoter sequences and the difference (D) between E and the average free energy over the entire genome (G) are used to search for promoters in the genomic sequences. Using these cutoff values to predict promoter regions across entire Escherichia coli genome, we achieved a reliability of 70% when the predicted promoters were cross verified against the 960 transcription start sites (TSSs) listed in the Ecocyc database. Annotation of the whole E. coli genome for promoter region could be carried out with 49% accuracy. The method is quite general and it can be used to annotate the promoter regions of other prokaryotic genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

nt:

Nucleotides

RNAP:

RNA polymerase

TSS:

transcription start site

References

  • Allawi H T and SantaLucia J Jr 1997 Thermodynamics and NMR of internal G.T mismatches in DNA; Biochemistry 36 10581–10594

    Article  PubMed  CAS  Google Scholar 

  • Botchan P 1976 An Electron Microscopic Comparison of Transcription on Linear and Superhelical DNA; J. Mol. Biol. 105 161–176

    Article  PubMed  CAS  Google Scholar 

  • Breslauer K J, Frank R, Blocker H and Marky L A 1986, Predicting DNA duplex stability from the base sequence; Proc. Natl. Acad. Sci. USA 83 3746–3750

    Article  PubMed  CAS  Google Scholar 

  • Bucher P 1990 Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences; J. Mol. Biol. 212 563–578

    Article  PubMed  CAS  Google Scholar 

  • Fickett J W and Hatzigeorgiou A G 1997, Eukaryotic promoter recognition; Genome Res. 7 861–878

    PubMed  CAS  Google Scholar 

  • Harley C B and Reynolds R P 1987 Analysis of E. coli promoter sequences; Nucleic Acids Res. 15 2343–2361

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson G B 1996 The prediction of vertebrate promoter regions using differential hexamer frequency analysis; Comput. Appl. Biosci. 12 391–398

    PubMed  CAS  Google Scholar 

  • Kanhere A and Bansal M 2003 Identification of additional ‘punctuation marks’ in genomic DNA; Proc. FAOBMB Bangalore 139 7–11

    Google Scholar 

  • Kanhere A and Bansal M 2005a Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes; Nucleic Acids Res. 33 3165–3175

    Article  PubMed  CAS  Google Scholar 

  • Kanhere A and Bansal M 2005b A novel method for prokaryotic promoter prediction based on DNA stability; BMC Bioinformatics 6 1471–2105

    Article  Google Scholar 

  • Keseler I M, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M and Karp PD 2005 EcoCyc: A comprehensive database resource for Escherichia coli; Nucleic Acids Res. 33 D334–D377

    Article  PubMed  CAS  Google Scholar 

  • Kowalski D, Natale D and Eddy M 1988 Stable DNA unwinding, not “breathing,” accounts for single-strand-specific nuclease hypersensitivity of specific A+T-rich sequences; Proc. Natl. Acad. Sci. USA 85 9464–9468

    Article  PubMed  CAS  Google Scholar 

  • Makita Y, Nakao M, Ogasawara N and Nakai K 2004 DBTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics; Nucleic Acids Res. 32 D75–D77

    Article  PubMed  CAS  Google Scholar 

  • Margalit H, Shapiro B A, Nussinov R, Owens J and Jernigan RL 1988 Helix stability in prokaryotic promoter regions; Biochemistry 27 5179–5188

    Article  PubMed  CAS  Google Scholar 

  • Ohler U and Niemann H 2001 Identification and analysis of eukaryotic promoters: recent computational approaches; Trends Genet. 17 56–60

    Article  PubMed  CAS  Google Scholar 

  • Pedersen A G, Baldi P, Chauvin Y and Brunak S 1999 The biology of eukaryotic promoter prediction — a review; Comput. Chem. 23 191–207

    Article  PubMed  CAS  Google Scholar 

  • Prestridge D S 1995 Predicting Pol II promoter sequences using transcriptional factor binding sites; J. Mol. Biol. 249 923–932

    Article  PubMed  CAS  Google Scholar 

  • Reese M G 2001 Application of time-delay neural network to promoter annotation in the drosophila melanogaster genome; Comput. Chem. 26 51–56

    Article  PubMed  CAS  Google Scholar 

  • Salgado H, Gama-Castro S, Martinez-Antonio A, Diaz-Peredo E, Sanchez-Solano F, Peralta-Gil M, Garcia-Alonso D, Jimenez-Jacinto V et al 2004 RegulonDB (version 4.0), Transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12; Nucleic Acids Res. 32 D303–D306

    Article  PubMed  CAS  Google Scholar 

  • SantaLucia J Jr 1998 A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbour thermodynamics; Proc. Natl. Acad. Sci. USA 95 1460–1465

    Article  PubMed  CAS  Google Scholar 

  • Staden R 1984 Computer methods to locate signals in nucleic acid sequences; Nucleic Acids Res. 12 789–800

    Article  Google Scholar 

  • Vollenweider H J, Fiandt M and Szybalski W 1979 A relationship between DNA helix stability and recognition sites for RNA polymerase; Science 205 508–511

    Article  PubMed  CAS  Google Scholar 

  • Wang H and Benham C J 2006 Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress; BMC Bioinformatics 7 1471–2105

    Google Scholar 

  • Werner T 1999 Models for prediction and recognition of eukaryotic promoters; Mammal. Genome 10 168–175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju Bansal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangannan, V., Bansal, M. Identification and annotation of promoter regions in microbial genome sequences on the basis of DNA stability. J Biosci 32 (Suppl 1), 851–862 (2007). https://doi.org/10.1007/s12038-007-0085-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0085-1

Keywords

Navigation