Skip to main content
Log in

Molecular Basis of Sex Difference in Neuroprotection induced by Hypoxia Preconditioning in Zebrafish

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypoxia, the major cause of ischemic injury, leads to debilitating disease in infants via birth asphyxia and cerebral palsy, whereas in adults via heart attack and stroke. A widespread, natural protective phenomenon termed ‘hypoxic preconditioning’ (PH) occurs when prior exposures to hypoxia eventually result in robust hypoxia resistance. Accordingly, we have developed and optimized a novel model of hypoxic preconditioning in adult zebrafish to mimic the tolerance of mini stroke(s) in human, which appears to protect against the severe damage inflicted by a major stroke event. Here, we observed a remarkable difference in the progression pattern of neuroprotection between preconditioning hypoxia followed by acute hypoxia (PH) group, and acute hypoxia (AH) only group, with noticeable sex difference when compared with normoxia behaviour upon recovery. Since gender difference has been reported in stroke risk factors and disease history, it was pertinent to investigate whether any such sex difference also exists in PH’s protective mechanism against acute ischemic stroke. In order to elucidate the neural molecular mechanisms behind sex difference in neuroprotection induced by PH, a high throughput proteomics approach utilizing iTRAQ was performed, followed by protein enrichment analysis using ingenuity pathway analysis (IPA) tool. Out of thousands of significantly altered proteins in zebrafish brain, the ones having critical role either in neuroglial proliferation/differentiation or neurotrophic functions were validated by analyzing their expression levels in preconditioned (PH), acute hypoxia (AH), and normoxia groups. The data indicate that female zebrafish brains are more protected against the severity of AH when exposed to the hypoxic preconditioning. The study also sheds light on the involvement of many signalling pathways underlying sex difference in preconditioning-induced neuroprotective mechanism, which can be further validated for the therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26(5):248–254. https://doi.org/10.1016/S0166-2236(03)00071-7

    Article  CAS  PubMed  Google Scholar 

  2. Luo T, Zhang H, Zhang WW, Huang JT, Song EL, Chen SG, He F, Xu J et al (2011) Neuroprotective effect of Jatrorrhizine on hydrogen peroxide-induced cell injury and its potential mechanisms in PC12 cells. Neurosci Lett 498(3):227–231. https://doi.org/10.1016/j.neulet.2011.05.017

    Article  CAS  PubMed  Google Scholar 

  3. Lu GW, Cui XY, Zhao BM (1999) Alteration of oxygen consumption and energy metabolism during repetitive exposure of mice to hypoxia. Neurochem Res 24(5):625–628. https://doi.org/10.1023/a:1021092023253

    Article  CAS  PubMed  Google Scholar 

  4. Lu GW, Yu S, Li RH, Cui XY, Gao CY (2005) Hypoxic preconditioning: a novel intrinsic cytoprotective strategy. Mol Neurobiol 31(1-3):255–271. https://doi.org/10.1385/MN:31:1-3:255

    Article  CAS  PubMed  Google Scholar 

  5. Wang JN, Ding P, Huang YZ, Luo LN, Guo LY, Kong X, Shao F (2007) The protective effect of PEP-1-SOD1 preconditioning on hypoxia/reoxygenation injury in cultured human umbilical vein endothelial cells. Zhonghua Xin Xue Guan Bing Za Zhi 35(8):750–756

    CAS  PubMed  Google Scholar 

  6. Haldane JB (1927) Carbon monoxide as a tissue poison. Biochem J 21(5):1068–1075. https://doi.org/10.1042/bj0211068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Michiels C (2004) Physiological and pathological responses to hypoxia. Am J Pathol 164(6):1875–1882. https://doi.org/10.1016/S0002-9440(10)63747-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu G, Ding D, Shi M (1999) Acute adaptation of mice to hypoxic hypoxia. Biol Signals Recept 8(4-5):247–255. https://doi.org/10.1159/000014594

    Article  CAS  PubMed  Google Scholar 

  9. Perez-Pinzon MA, Mumford PL, Rosenthal M, Sick TJ (1996) Anoxic preconditioning in hippocampal slices: role of adenosine. Neuroscience 75(3):687–694. https://doi.org/10.1016/0306-4522(96)00311-9

    Article  CAS  PubMed  Google Scholar 

  10. Samoilov M, Churilova A, Gluschenko T, Vetrovoy O, Dyuzhikova N, Rybnikova E (2016) Acetylation of histones in neocortex and hippocampus of rats exposed to different modes of hypobaric hypoxia: Implications for brain hypoxic injury and tolerance. Acta Histochem 118(2):80–89. https://doi.org/10.1016/j.acthis.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  11. Suryana E, Jones NM (2014) The effects of hypoxic preconditioning on white matter damage following hypoxic-ischaemic injury in the neonatal rat brain. Int J Dev Neurosci 37:69–75. https://doi.org/10.1016/j.ijdevneu.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  12. Miller BA, Perez RS, Shah AR, Gonzales ER, Park TS, Gidday JM (2001) Cerebral protection by hypoxic preconditioning in a murine model of focal ischemia-reperfusion. Neuroreport 12(8):1663–1669. https://doi.org/10.1097/00001756-200106130-00030

    Article  CAS  PubMed  Google Scholar 

  13. Schurr A, Reid KH, Tseng MT, West C, Rigor BM (1986) Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res 374(2):244–248. https://doi.org/10.1016/0006-8993(86)90418-x

    Article  CAS  PubMed  Google Scholar 

  14. Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, Lu G, Zhao H et al (2017) Preconditioning in neuroprotection: from hypoxia to ischemia. Prog Neurobiol 157:79–91. https://doi.org/10.1016/j.pneurobio.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stagliano NE, Perez-Pinzon MA, Moskowitz MA, Huang PL (1999) Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 19(7):757–761. https://doi.org/10.1097/00004647-199907000-00005

    Article  CAS  PubMed  Google Scholar 

  16. Azad P, Zhou D, Zarndt R, Haddad GG (2012) Identification of genes underlying hypoxia tolerance in Drosophila by a P-element screen. G3 (Bethesda) 2(10):1169–1178. https://doi.org/10.1534/g3.112.003681

    Article  CAS  Google Scholar 

  17. Azad P, Haddad GG (2013) Genetic animal models of preconditioning. Transl Stroke Res 4(1):51–55. https://doi.org/10.1007/s12975-012-0218-1

    Article  CAS  PubMed  Google Scholar 

  18. Chang AJ, Bargmann CI (2008) Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105(20):7321–7326. https://doi.org/10.1073/pnas.0802164105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wacker BK, Perfater JL, Gidday JM (2012) Hypoxic preconditioning induces stroke tolerance in mice via a cascading HIF, sphingosine kinase, and CCL2 signaling pathway. J Neurochem 123(6):954–962. https://doi.org/10.1111/jnc.12047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). 4th ed. edn. University of Oregon Press, Eugene

  21. Das T, Soren K, Yerasi M, Kumar A, Chakravarty S (2019) Revealing sex-specific molecular changes in hypoxia-ischemia induced neural damage and subsequent recovery using zebrafish model. Neurosci Lett 712:134492. https://doi.org/10.1016/j.neulet.2019.134492

    Article  CAS  PubMed  Google Scholar 

  22. Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation 104(25):3158–3167. https://doi.org/10.1161/hc5001.100039

    Article  CAS  PubMed  Google Scholar 

  23. Perez-Pinzon MA, Xu GP, Mumford PL, Dietrich WD, Rosenthal M, Sick TJ (1997) Rapid ischemic preconditioning protects rats from cerebral anoxia/ischemia. Adv Exp Med Biol 428:155–161. https://doi.org/10.1007/978-1-4615-5399-1_22

    Article  CAS  PubMed  Google Scholar 

  24. Thompson JW, Dave KR, Young JI, Perez-Pinzon MA (2013) Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance. Neurotherapeutics 10(4):789–797. https://doi.org/10.1007/s13311-013-0202-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan LN, Zhu W, Li Y, Xu XL, Guo LJ, Lu Q, Wang J (2014) Astrocytic Toll-like receptor 3 is associated with ischemic preconditioning-induced protection against brain ischemia in rodents. PLoS One 9(6):e99526. https://doi.org/10.1371/journal.pone.0099526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J et al (2014) Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 114:58–83. https://doi.org/10.1016/j.pneurobio.2013.11.005

    Article  PubMed  Google Scholar 

  27. Yun J, Li J, Zuo Z (2014) Transferred inter-cell ischemic preconditioning-induced neuroprotection may be mediated by adenosine A1 receptors. Brain Res Bull 103:66–71. https://doi.org/10.1016/j.brainresbull.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Balduini W, De Angelis V, Mazzoni E, Cimino M (2000) Long-lasting behavioral alterations following a hypoxic/ischemic brain injury in neonatal rats. Brain Res 859(2):318–325. https://doi.org/10.1016/s0006-8993(00)01997-1

    Article  CAS  PubMed  Google Scholar 

  29. Lubics A, Reglodi D, Tamas A, Kiss P, Szalai M, Szalontay L, Lengvari I (2005) Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 157(1):157–165. https://doi.org/10.1016/j.bbr.2004.06.019

    Article  PubMed  Google Scholar 

  30. McAuliffe JJ, Miles L, Vorhees CV (2006) Adult neurological function following neonatal hypoxia-ischemia in a mouse model of the term neonate: water maze performance is dependent on separable cognitive and motor components. Brain Res 1118 (1):208-221. doi:https://doi.org/10.1016/j.brainres.2006.08.030

  31. Young RS, Kolonich J, Woods CL, Yagel SK (1986) Behavioral performance of rats following neonatal hypoxia-ischemia. Stroke 17(6):1313–1316. https://doi.org/10.1161/01.str.17.6.1313

    Article  CAS  PubMed  Google Scholar 

  32. Kim YH, Lee KS, Kim YS, Kim JH (2019) Effects of hypoxic preconditioning on memory evaluated using the T-maze behavior test. Anim Cells Syst (Seoul) 23(1):10–17. https://doi.org/10.1080/19768354.2018.1557743

    Article  CAS  Google Scholar 

  33. Manukhina EB, Tseilikman VE, Karpenko MN, Pestereva NS, Tseilikman OB, Komelkova MV, Kondashevskaya MV, Goryacheva AV et al (2020) Intermittent hypoxic conditioning alleviates post-traumatic stress disorder-induced damage and dysfunction of rat visceral organs and brain. Int J Mol Sci 21(1). https://doi.org/10.3390/ijms21010345

  34. Jones NM, Kardashyan L, Callaway JK, Lee EM, Beart PM (2008) Long-term functional and protective actions of preconditioning with hypoxia, cobalt chloride, and desferrioxamine against hypoxic-ischemic injury in neonatal rats. Pediatr Res 63(6):620–624. https://doi.org/10.1203/PDR.0b013e31816d9117

    Article  CAS  PubMed  Google Scholar 

  35. Xing D, Sun X, Li J, Cui M, Tan-Allen K, Bonanno JA (2006) Hypoxia preconditioning protects corneal stromal cells against induced apoptosis. Exp Eye Res 82(5):780–787. https://doi.org/10.1016/j.exer.2005.09.020

    Article  CAS  PubMed  Google Scholar 

  36. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, Wouters BG (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22(21):7405–7416. https://doi.org/10.1128/mcb.22.21.7405-7416.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ivanova IG, Park CV, Yemm AI, Kenneth NS (2018) PERK/eIF2alpha signaling inhibits HIF-induced gene expression during the unfolded protein response via YB1-dependent regulation of HIF1alpha translation. Nucleic Acids Res 46(8):3878–3890. https://doi.org/10.1093/nar/gky127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M, Fini M, Russo MA (2016) The interplay of reactive oxygen species, hypoxia, inflammation, and Sirtuins in cancer initiation and progression. Oxidative Med Cell Longev 2016:3907147. doi:https://doi.org/10.1155/2016/3907147

  39. Zwaans BM, Lombard DB (2014) Interplay between Sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Dis Model Mech 7(9):1023–1032. https://doi.org/10.1242/dmm.016287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21(4):521–531. https://doi.org/10.1016/j.molcel.2006.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roux PP, Topisirovic I (2018) Signaling pathways involved in the regulation of mRNA translation. Mol Cell Biol 38(12). https://doi.org/10.1128/MCB.00070-18

  42. Kong Z, Zhou C, Chen L, Ren A, Zhang D, Basang Z, Tan Z, Kang J et al (2019) Multi-omics analysis reveals up-regulation of APR signaling, LXR/RXR and FXR/RXR activation pathways in Holstein dairy cows exposed to high-altitude hypoxia. Animals (Basel) 9(7). https://doi.org/10.3390/ani9070406

  43. Gao X, Lin SH, Ren F, Li JT, Chen JJ, Yao CB, Yang HB, Jiang SX et al (2016) Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 7:11960. https://doi.org/10.1038/ncomms11960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bouquerel P, Gstalder C, Muller D, Laurent J, Brizuela L, Sabbadini RA, Malavaud B, Pyronnet S et al (2016) Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2alpha expression and activity in cancer. Oncogenesis 5:e209. https://doi.org/10.1038/oncsis.2016.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu R, Sun Y, Chen Z, Yao Y, Ma G (2016) Hypoxic preconditioning inhibits hypoxia-induced apoptosis of cardiac progenitor cells via the PI3K/Akt-DNMT1-p53 pathway. Sci Rep 6:30922. https://doi.org/10.1038/srep30922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen CY, Sun WZ, Kang KH, Chou HC, Tsao PN, Hsieh WS, Fu WM (2015) Hypoxic preconditioning suppresses glial activation and neuroinflammation in neonatal brain insults. Mediators Inflamm:632592. https://doi.org/10.1155/2015/632592

  47. Vecera J, Kudova J, Kucera J, Kubala L, Pachernik J (2018) Neural Differentiation is inhibited through HIF1alpha/beta-catenin signaling in embryoid bodies. Stem Cells Int 2017:8715798. https://doi.org/10.1155/2017/8715798

    Article  CAS  Google Scholar 

  48. Giussani DA, Thakor AS, Frulio R, Gazzolo D (2005) Acute hypoxia increases S100beta protein in association with blood flow redistribution away from peripheral circulations in fetal sheep. Pediatr Res 58(2):179–184. https://doi.org/10.1203/01.PDR.0000169999.66157.C0

    Article  CAS  PubMed  Google Scholar 

  49. Galle AA, Jones NM (2013) The neuroprotective actions of hypoxic preconditioning and postconditioning in a neonatal rat model of hypoxic-ischemic brain injury. Brain Res 1498:1–8. https://doi.org/10.1016/j.brainres.2012.12.026

    Article  CAS  PubMed  Google Scholar 

  50. Lavezzi AM, Corna MF, Matturri L (2013) Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death. J Neurol Sci 329(1-2):45–50. https://doi.org/10.1016/j.jns.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  51. Bohuslavova R, Cerychova R, Papousek F, Olejnickova V, Bartos M, Gorlach A, Kolar F, Sedmera D et al (2019) HIF-1alpha is required for development of the sympathetic nervous system. Proc Natl Acad Sci U S A 116(27):13414–13423. https://doi.org/10.1073/pnas.1903510116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Satriotomo I, Nichols NL, Dale EA, Emery AT, Dahlberg JM, Mitchell GS (2016) Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons. Neuroscience 322:479–488. https://doi.org/10.1016/j.neuroscience.2016.02.060

    Article  CAS  PubMed  Google Scholar 

  53. Cacialli P, Gueguen MM, Coumailleau P, D’Angelo L, Kah O, Lucini C, Pellegrini E (2016) BDNF expression in larval and adult zebrafish brain: distribution and cell identification. PLoS One 11(6):e0158057. https://doi.org/10.1371/journal.pone.0158057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karisetty BC, Joshi PC, Kumar A, Chakravarty S (2017) Sex differences in the effect of chronic mild stress on mouse prefrontal cortical BDNF levels: a role of major ovarian hormones. Neuroscience 356:89–101. https://doi.org/10.1016/j.neuroscience.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  55. Bossenmeyer-Pourie C, Koziel V, Daval JL (2000) Effects of hypothermia on hypoxia-induced apoptosis in cultured neurons from developing rat forebrain: comparison with preconditioning. Pediatr Res 47(3):385–391. https://doi.org/10.1203/00006450-200003000-00017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Director, CSIR-IICT for overall support and KIM department for generating an institutional publication number (IICT/Pubs./2019/437).

Funding

This research was supported by the Council of Scientific and Industrial Research (CSIR), India network project (BSC0103-UNDO to SC and AK), and Department of Biotechnology, Government of India (BT/PR14338/MED/30/495/2010 to SC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumana Chakravarty.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig.1

IPA generated protein enrichment analysis . Top 5 canonical pathways of PHM and PHF (A) . Top upstream regulators of PHM and PHF (B) (PNG 406 kb)

Supplementary Fig. 2

Top regulatory networks generated by IPA. Regulatory networks with disease functions of observation 1 (AHM/AHF vs NM/NF) and observation 2 (PHM/PHF vs NM/NF). (PNG 976 kb)

Supplementary Table.1

IPA generated top analysis ready molecules. (PNG 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Soren, K., Yerasi, M. et al. Molecular Basis of Sex Difference in Neuroprotection induced by Hypoxia Preconditioning in Zebrafish. Mol Neurobiol 57, 5177–5192 (2020). https://doi.org/10.1007/s12035-020-02091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02091-1

Keywords

Navigation