Skip to main content
Log in

Inverse Agonism of Cannabinoid Receptor Type 2 Confers Anti-inflammatory and Neuroprotective Effects Following Status Epileptics

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Prolonged status epilepticus (SE) in humans causes high mortality and brain inflammation–associated neuronal injury and morbidity in survivors. Currently, the only effective treatment is to terminate the seizures swiftly to prevent brain damage. However, reliance on acute therapies alone would be imprudent due to the required short response time. Follow-on therapies that can be delivered well after the SE onset are in an urgent need. Cannabinoid receptor type 2 (CB2), a G protein-coupled receptor that can be expressed by activated brain microglia, has emerged as an appealing anti-inflammatory target for brain conditions. In the current study, we reported that the CB2 inverse agonism by our current lead compound SMM-189 largely prevented the rat primary microglia–mediated inflammation and showed moderate neuroprotection against N-methyl-d-aspartic acid (NMDA) receptor–mediated excitotoxicity in rat primary hippocampal cultures containing both neurons and glia. Using a classical mouse model of epilepsy, in which SE was induced by systemic administration of kainate (30 mg/kg, i.p.) and proceeded for 1 h, we demonstrated that SE downregulated the CB1 but slightly upregulated CB2 receptor in the hippocampus. Transient treatment with SMM-189 (6 mg/kg, i.p., b.i.d.) after the SE was interrupted by diazepam (10 mg/kg, i.p.) prevented the seizure-induced cytokine surge in the brain, neuronal death, and behavioral impairments 24 h after SE. Our results suggest that CB2 inverse agonism might provide an adjunctive anti-inflammatory therapy that can be delivered hours after SE onset, together with NMDA receptor blockers and first-line anti-convulsants, to reduce brain injury and functional deficits following prolonged seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Trinka E, Cock H, Hesdorffer D, Rossetti AO, Scheffer IE, Shinnar S, Shorvon S, Lowenstein DH (2015) A definition and classification of status epilepticus--report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 56:1515–1523. https://doi.org/10.1111/epi.13121

    Article  PubMed  Google Scholar 

  2. Betjemann JP, Lowenstein DH (2015) Status epilepticus in adults. Lancet Neurol 14:615–624. https://doi.org/10.1016/S1474-4422(15)00042-3

    Article  PubMed  Google Scholar 

  3. Rossetti AO, Lowenstein DH (2011) Management of refractory status epilepticus in adults: still more questions than answers. Lancet Neurol 10:922–930. https://doi.org/10.1016/S1474-4422(11)70187-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Annegers JF, Hauser WA, Shirts SB, Kurland LT (1987) Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med 316:493–498. https://doi.org/10.1056/NEJM198702263160901

    Article  CAS  PubMed  Google Scholar 

  5. Tsai MH, Chuang YC, Chang HW, Chang WN, Lai SL, Huang CR, Tsai NW, Wang HC et al (2009) Factors predictive of outcome in patients with de novo status epilepticus. Qjm 102:57–62. https://doi.org/10.1093/qjmed/hcn149

    Article  PubMed  Google Scholar 

  6. Reddy DS, Kuruba R (2013) Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int J Mol Sci 14:18284–18318. https://doi.org/10.3390/ijms140918284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loscher W (2017) Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res 42:1873–1888. https://doi.org/10.1007/s11064-017-2222-z

    Article  CAS  PubMed  Google Scholar 

  8. Sanchez Fernandez I, Abend NS, Agadi S, An S, Arya R, Brenton JN, Carpenter JL, Chapman KE et al (2015) Time from convulsive status epilepticus onset to anticonvulsant administration in children. Neurology 84:2304–2311. https://doi.org/10.1212/WNL.0000000000001673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sathe AG, Tillman H, Coles LD, Elm JJ, Silbergleit R, Chamberlain J, Kapur J, Cock HR et al (2019) Underdosing of benzodiazepines in patients with status epilepticus enrolled in established status epilepticus treatment trial. Acad Emerg Med 26:940–943. https://doi.org/10.1111/acem.13811

    Article  PubMed  PubMed Central  Google Scholar 

  10. Trinka E, Hofler J, Leitinger M, Brigo F (2015) Pharmacotherapy for status epilepticus. Drugs 75:1499–1521. https://doi.org/10.1007/s40265-015-0454-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Varvel NH, Jiang J, Dingledine R (2015) Candidate drug targets for prevention or modification of epilepsy. Annu Rev Pharmacol Toxicol 55:229–247. https://doi.org/10.1146/annurev-pharmtox-010814-124607

    Article  CAS  PubMed  Google Scholar 

  12. Horvath L, Fekete I, Molnar M, Valoczy R, Marton S, Fekete K (2019) The outcome of status epilepticus and long-term follow-up. Front Neurol 10:427. https://doi.org/10.3389/fneur.2019.00427

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40. https://doi.org/10.1038/nrneurol.2010.178

    Article  CAS  PubMed  Google Scholar 

  14. Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, Henshall DC, Kaufer D et al (2017) Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia 58(Suppl 3):27–38. https://doi.org/10.1111/epi.13783

    Article  PubMed  PubMed Central  Google Scholar 

  15. Klein P, Dingledine R, Aronica E, Bernard C, Blumcke I, Boison D, Brodie MJ, Brooks-Kayal AR et al (2018) Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia 59:37–66. https://doi.org/10.1111/epi.13965

    Article  CAS  PubMed  Google Scholar 

  16. Dey A, Kang X, Qiu J, Du Y, Jiang J (2016) Anti-inflammatory small molecules to treat seizures and epilepsy: from bench to bedside. Trends Pharmacol Sci 37:463–484. https://doi.org/10.1016/j.tips.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schartz ND, Wyatt-Johnson SK, Price LR, Colin SA, Brewster AL (2018) Status epilepticus triggers long-lasting activation of complement C1q-C3 signaling in the hippocampus that correlates with seizure frequency in experimental epilepsy. Neurobiol Dis 109:163–173. https://doi.org/10.1016/j.nbd.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  18. Nagib MM, Yu Y, Jiang J (2020) Targeting prostaglandin receptor EP2 for adjunctive treatment of status epilepticus. Pharmacol Ther:107504. https://doi.org/10.1016/j.pharmthera.2020.107504

    Article  CAS  Google Scholar 

  19. Loscher W, Klitgaard H, Twyman RE, Schmidt D (2013) New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 12:757–776. https://doi.org/10.1038/nrd4126

    Article  CAS  PubMed  Google Scholar 

  20. Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24. https://doi.org/10.1016/j.neuropharm.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  21. Soltesz I, Alger BE, Kano M, Lee SH, Lovinger DM, Ohno-Shosaku T, Watanabe M (2015) Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16:264–277. https://doi.org/10.1038/nrn3937

    Article  CAS  PubMed  Google Scholar 

  22. Stella N (2010) Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58:1017–1030. https://doi.org/10.1002/glia.20983

    Article  PubMed  PubMed Central  Google Scholar 

  23. Baek JH, Darlington CL, Smith PF, Ashton JC (2013) Antibody testing for brain immunohistochemistry: brain immunolabeling for the cannabinoid CB(2) receptor. J Neurosci Methods 216:87–95. https://doi.org/10.1016/j.jneumeth.2013.03.021

    Article  CAS  PubMed  Google Scholar 

  24. Dhopeshwarkar A, Mackie K (2014) CB2 cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 86:430–437. https://doi.org/10.1124/mol.114.094649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bu W, Ren H, Deng Y, Del Mar N, Guley NM, Moore BM, Honig MG, Reiner A (2016) Mild traumatic brain injury produces neuron loss that can be rescued by modulating microglial activation using a CB2 receptor inverse agonist. Front Neurosci 10:449. https://doi.org/10.3389/fnins.2016.00449

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu Y, Nguyen DT, Jiang J (2019) G protein-coupled receptors in acquired epilepsy: druggability and translatability. Prog Neurobiol 183:101682. https://doi.org/10.1016/j.pneurobio.2019.101682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Chen C (2018) Alleviation of neuropathology by inhibition of monoacylglycerol lipase in APP transgenic mice lacking CB2 receptors. Mol Neurobiol 55:4802–4810. https://doi.org/10.1007/s12035-017-0689-x

    Article  CAS  PubMed  Google Scholar 

  28. Mecha M, Carrillo-Salinas FJ, Feliu A, Mestre L, Guaza C (2016) Microglia activation states and cannabinoid system: therapeutic implications. Pharmacol Ther 166:40–55. https://doi.org/10.1016/j.pharmthera.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  29. Huizenga MN, Wicker E, Beck VC, Forcelli PA (2017) Anticonvulsant effect of cannabinoid receptor agonists in models of seizures in developing rats. Epilepsia 58:1593–1602. https://doi.org/10.1111/epi.13842

    Article  CAS  PubMed  Google Scholar 

  30. Rowley S, Sun X, Lima IV, Tavenier A, de Oliveira ACP, Dey SK, Danzer SC (2017) Cannabinoid receptor 1/2 double-knockout mice develop epilepsy. Epilepsia 58:e162–e166. https://doi.org/10.1111/epi.13930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shapiro L, Wong JC, Escayg A (2019) Reduced cannabinoid 2 receptor activity increases susceptibility to induced seizures in mice. Epilepsia 60:2359–2369. https://doi.org/10.1111/epi.16388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Presley CS, Mustafa SM, Abidi AH, Moore BM 2nd (2015) Synthesis and biological evaluation of (3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-aryl/alkyl-methanone selective CB2 inverse agonist. Bioorg Med Chem 23:5390–5401. https://doi.org/10.1016/j.bmc.2015.07.057

    Article  CAS  PubMed  Google Scholar 

  33. Quan Y, Jiang J, Dingledine R (2013) EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem 288:9293–9302. https://doi.org/10.1074/jbc.M113.455816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fu Y, Yang MS, Jiang J, Ganesh T, Joe E, Dingledine R (2015) EP2 receptor signaling regulates microglia death. Mol Pharmacol 88:161–170. https://doi.org/10.1124/mol.115.098202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang J, Ganesh T, Du Y, Thepchatri P, Rojas A, Lewis I, Kurtkaya S, Li L et al (2010) Neuroprotection by selective allosteric potentiators of the EP2 prostaglandin receptor. Proc Natl Acad Sci U S A 107:2307–2312. https://doi.org/10.1073/pnas.0909310107

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jiang J, Van TM, Ganesh T, Dingledine R (2018) Discovery of 2-piperidinyl phenyl benzamides and trisubstituted pyrimidines as positive allosteric modulators of the prostaglandin receptor EP2. ACS Chem Neurosci 9:699–707. https://doi.org/10.1021/acschemneuro.7b00486

    Article  CAS  PubMed  Google Scholar 

  37. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294. https://doi.org/10.1016/0013-4694(72)90177-0

    Article  CAS  PubMed  Google Scholar 

  38. Schauwecker PE, Steward O (1997) Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci U S A 94:4103–4108. https://doi.org/10.1073/pnas.94.8.4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang J, Yu Y, Kinjo ER, Du Y, Nguyen HP, Dingledine R (2019) Suppressing pro-inflammatory prostaglandin signaling attenuates excitotoxicity-associated neuronal inflammation and injury. Neuropharmacology 149:149–160. https://doi.org/10.1016/j.neuropharm.2019.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reiner A, Heldt SA, Presley CS, Guley NH, Elberger AJ, Deng Y, D'Surney L, Rogers JT et al (2014) Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189. Int J Mol Sci 16:758–787. https://doi.org/10.3390/ijms16010758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guley NM, Del Mar NA, Ragsdale T, Li C, Perry AM, Moore BM, Honig MG, Reiner A (2019) Amelioration of visual deficits and visual system pathology after mild TBI with the cannabinoid type-2 receptor inverse agonist SMM-189. Exp Eye Res 182:109–124. https://doi.org/10.1016/j.exer.2019.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, McAfee SS, Guley NM, Del Mar N, Bu W, Heldt SA, Honig MG, Moore BM, 2nd, Reiner A, Heck DH (2017) Abnormalities in dynamic brain activity caused by mild traumatic brain injury are partially rescued by the cannabinoid type-2 receptor inverse agonist SMM-189. eNeuro 4. https://doi.org/10.1523/ENEURO.0387-16.2017

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kang X, Qiu J, Li Q, Bell KA, Du Y, Jung DW, Lee JY, Hao J et al (2017) Cyclooxygenase-2 contributes to oxidopamine-mediated neuronal inflammation and injury via the prostaglandin E2 receptor EP2 subtype. Sci Rep 7:9459. https://doi.org/10.1038/s41598-017-09528-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang J, Yang MS, Quan Y, Gueorguieva P, Ganesh T, Dingledine R (2015) Therapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticus. Neurobiol Dis 76:126–136. https://doi.org/10.1016/j.nbd.2014.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qiu J, Li Q, Bell KA, Yao X, Du Y, Zhang E, Yu JJ, Yu Y et al (2019) Small-molecule inhibition of prostaglandin E receptor 2 impairs cyclooxygenase-associated malignant glioma growth. Br J Pharmacol 176:1680–1699. https://doi.org/10.1111/bph.14622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang J, Ganesh T, Du Y, Quan Y, Serrano G, Qui M, Speigel I, Rojas A et al (2012) Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc Natl Acad Sci U S A 109:3149–3154. https://doi.org/10.1073/pnas.1120195109

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jiang J, Quan Y, Ganesh T, Pouliot WA, Dudek FE, Dingledine R (2013) Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci U S A 110:3591–3596. https://doi.org/10.1073/pnas.1218498110

    Article  PubMed  PubMed Central  Google Scholar 

  48. Deacon RM (2006) Assessing nest building in mice. Nat Protoc 1:1117–1119. https://doi.org/10.1038/nprot.2006.170

    Article  PubMed  Google Scholar 

  49. Roux S, Sable E, Porsolt RD (2005) Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effects on behavior and physiological function. Curr Protoc Pharmacol Chapter 10:Unit 10 10. https://doi.org/10.1002/0471141755.ph1010s27

  50. Presley C, Abidi A, Suryawanshi S, Mustafa S, Meibohm B, Moore BM (2015) Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist. Pharmacol Res Perspect 3:e00159. https://doi.org/10.1002/prp2.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184. https://doi.org/10.1016/j.tins.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  52. Cherry JD, Olschowka JA, O'Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. https://doi.org/10.1186/1742-2094-11-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524:3865–3895. https://doi.org/10.1002/cne.24040

    Article  Google Scholar 

  54. Falenski KW, Carter DS, Harrison AJ, Martin BR, Blair RE, DeLorenzo RJ (2009) Temporal characterization of changes in hippocampal cannabinoid CB(1) receptor expression following pilocarpine-induced status epilepticus. Brain Res 1262:64–72. https://doi.org/10.1016/j.brainres.2009.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu Q, Wang H (2018) The spatiotemporal expression changes of CB2R in the hippocampus of rats following pilocarpine-induced status epilepticus. Epilepsy Res 148:8–16. https://doi.org/10.1016/j.eplepsyres.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  56. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232. https://doi.org/10.1038/nrg3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marcheselli VL, Bazan NG (1996) Sustained induction of prostaglandin endoperoxide synthase-2 by seizures in hippocampus. Inhibition by a platelet-activating factor antagonist. J Biol Chem 271:24794–24799. https://doi.org/10.1074/jbc.271.40.24794

    Article  CAS  PubMed  Google Scholar 

  58. Rojas A, Jiang J, Ganesh T, Yang MS, Lelutiu N, Gueorguieva P, Dingledine R (2014) Cyclooxygenase-2 in epilepsy. Epilepsia 55:17–25. https://doi.org/10.1111/epi.12461

    Article  CAS  PubMed  Google Scholar 

  59. Jiang J, Dingledine R (2013) Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends Pharmacol Sci 34:413–423. https://doi.org/10.1016/j.tips.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  60. Hartings JA, York J, Carroll CP, Hinzman JM, Mahoney E, Krueger B, Winkler MKL, Major S et al (2017) Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain 140:2673–2690. https://doi.org/10.1093/brain/awx214

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jiang J, Qiu J, Li Q, Shi Z (2017) Prostaglandin E2 signaling: alternative target for glioblastoma? Trends Cancer 3:75–78. https://doi.org/10.1016/j.trecan.2016.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qiu J, Shi Z, Jiang J (2017) Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today 22:148–156. https://doi.org/10.1016/j.drudis.2016.09.017

    Article  CAS  PubMed  Google Scholar 

  63. Du Y, Kemper T, Qiu J, Jiang J (2016) Defining the therapeutic time window for suppressing the inflammatory prostaglandin E2 signaling after status epilepticus. Expert Rev Neurother 16:123–130. https://doi.org/10.1586/14737175.2016.1134322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dingledine R, Varvel NH, Dudek FE (2014) When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol 813:109–122. https://doi.org/10.1007/978-94-017-8914-1_9

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lenck-Santini PP, Scott RC (2015) Mechanisms responsible for cognitive impairment in epilepsy. Cold Spring Harb Perspect Med 5. https://doi.org/10.1101/cshperspect.a022772

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chin J, Scharfman HE (2013) Shared cognitive and behavioral impairments in epilepsy and Alzheimer’s disease and potential underlying mechanisms. Epilepsy Behav 26:343–351. https://doi.org/10.1016/j.yebeh.2012.11.040

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pineda E, Jentsch JD, Shin D, Griesbach G, Sankar R, Mazarati A (2014) Behavioral impairments in rats with chronic epilepsy suggest comorbidity between epilepsy and attention deficit/hyperactivity disorder. Epilepsy Behav 31:267–275. https://doi.org/10.1016/j.yebeh.2013.10.004

    Article  PubMed  Google Scholar 

  68. Friedman D, Devinsky O (2015) Cannabinoids in the treatment of epilepsy. N Engl J Med 373:1048–1058. https://doi.org/10.1056/NEJMra1407304

    Article  CAS  PubMed  Google Scholar 

  69. Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153:240–251. https://doi.org/10.1038/sj.bjp.0707584

    Article  CAS  PubMed  Google Scholar 

  70. Magloczky Z, Toth K, Karlocai R, Nagy S, Eross L, Czirjak S, Vajda J, Rasonyi G et al (2010) Dynamic changes of CB1-receptor expression in hippocampi of epileptic mice and humans. Epilepsia 51(Suppl 3):115–120. https://doi.org/10.1111/j.1528-1167.2010.02624.x

    Article  PubMed  PubMed Central  Google Scholar 

  71. Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86. https://doi.org/10.1016/j.pneurobio.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  72. Navarro G, Borroto-Escuela D, Angelats E, Etayo I, Reyes-Resina I, Pulido-Salgado M, Rodriguez-Perez AI, Canela EI et al (2018) Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer’s disease and levodopa-induced dyskinesia. Brain Behav Immun 67:139–151. https://doi.org/10.1016/j.bbi.2017.08.015

    Article  CAS  PubMed  Google Scholar 

  73. Buisseret B, Alhouayek M, Guillemot-Legris O, Muccioli GG (2019) Endocannabinoid and prostanoid crosstalk in pain. Trends Mol Med 25:882–896. https://doi.org/10.1016/j.molmed.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  74. Hermanson DJ, Gamble-George JC, Marnett LJ, Patel S (2014) Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol Sci 35:358–367. https://doi.org/10.1016/j.tips.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alhouayek M, Muccioli GG (2014) COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci 35:284–292. https://doi.org/10.1016/j.tips.2014.03.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) grants R00NS082379 (J.J.), R01NS100947 (J.J.), and R21NS109687 (J.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiong Jiang.

Ethics declarations

All animal work was approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Tennessee Health Science Center and performed in accordance with the Guide for the Care and Use of Laboratory Animals (the Guide) from the NIH.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Li, L., Nguyen, D.T. et al. Inverse Agonism of Cannabinoid Receptor Type 2 Confers Anti-inflammatory and Neuroprotective Effects Following Status Epileptics. Mol Neurobiol 57, 2830–2845 (2020). https://doi.org/10.1007/s12035-020-01923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01923-4

Keywords

Navigation