Skip to main content
Log in

Survey of the Arc Epigenetic Landscape in Normal Cognitive Aging

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aging is accompanied by aberrant gene expression that ultimately affects brain plasticity and the capacity to form long-term memories. Immediate-early genes (IEGs) play an active role in these processes. Using a rat model of normal cognitive aging, we found that the expression of Egr1 and c-Fos was associated with chronological age, whereas Arc was more tightly linked to cognitive outcomes in aging. More specifically, constitutive Arc expression was significantly elevated in aged rats with memory impairment compared to cognitively intact aged rats and young adult animals. Since alterations in the neuroepigenetic mechanisms that gate hippocampal gene expression are also associated with cognitive outcome in aging, we narrowed our focus on examining potential epigenetic mechanisms that may lead to aberrant Arc expression. Employing a multilevel analytical approach using bisulfite sequencing, chromatin immunoprecipitations, and micrococcal nuclease digestion, we identified CpG sites in the Arc promoter that were coupled to poor cognitive outcomes in aging, histone marks that were similarly coupled to spatial memory deficits, and nucleosome positioning that also varied depending on cognitive status. Together, these findings paint a diverse and complex picture of the Arc epigenetic landscape in cognitive aging and bolster a body of work, indicating that dysfunctional epigenetic regulation is associated with memory impairment in the aged brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250. https://doi.org/10.1038/nrn3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rapp PR, Bañuelos C, Myrum C (2020) Neuroadaptive trajectories of healthy mindspan: from genes to neural networks. In: Thomas AK, Gutchess A (eds) Handbook of cognitive aging. Cambridge University Press

  3. Blalock EM, Chen K-C, Sharrow K, Herman JP, Porter NM, Foster TC, Landfield PW (2003) Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 23:3807–3819. https://doi.org/10.1523/JNEUROSCI.23-09-03807.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haberman RP, Colantuoni C, Stocker AM, Schmidt AC, Pedersen JT, Gallagher M (2011) Prominent hippocampal CA3 gene expression profile in neurocognitive aging. Neurobiol Aging 32:1678–1692. https://doi.org/10.1016/j.neurobiolaging.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  5. Ianov L, DeBoth M, Chawla MK et al (2017a) Hippocampal transcriptomic profiles: subfield vulnerability to age and cognitive impairment. Front Aging Neurosci 9:1–15. https://doi.org/10.3389/fnagi.2017.00383

    Article  CAS  Google Scholar 

  6. Minatohara K, Akiyoshi M, Okuno H (2016) Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci 8:1–11. https://doi.org/10.3389/fnmol.2015.00078

    Article  CAS  Google Scholar 

  7. Alberini CM, Kandel ER (2015) The regulation of transcription in memory consolidation. Cold Spring Harb Perspect Biol 7:a021741. https://doi.org/10.1101/cshperspect.a021741

    Article  PubMed Central  Google Scholar 

  8. Spiegel AM, Sewal AS, Rapp PR (2014) Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan. Learn Mem 21:569–574. https://doi.org/10.1101/lm.033506.113

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barter JD, Foster TC (2018) Aging in the brain: new roles of epigenetics in cognitive decline. Neurosci 24:516–525. https://doi.org/10.1177/1073858418780971

    Article  CAS  Google Scholar 

  10. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Becker PB, Workman JL (2013) Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol 5:a017905–a017905. https://doi.org/10.1101/cshperspect.a017905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fletcher BR, Hill GS, Long JM, Gallagher M, Shapiro ML, Rapp PR (2014) A fine balance: regulation of hippocampal Arc/Arg3.1 transcription, translation and degradation in a rat model of normal cognitive aging. Neurobiol Learn Mem 115:58–67. https://doi.org/10.1016/j.nlm.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  13. Gallagher M, Burwell R, Burchinal M (1993) Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav Neurosci 107:618–626. https://doi.org/10.1037/0735-7044.107.4.618

    Article  CAS  PubMed  Google Scholar 

  14. Gallagher M, Burwell R, Burchinal M (2015) Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav Neurosci 129:540–548. https://doi.org/10.1037/bne0000080

    Article  PubMed  PubMed Central  Google Scholar 

  15. Myrum C, Rossi SL, Perez EJ, Rapp PR (2019) Cortical network dynamics are coupled with cognitive aging in rats. Hippocampus. https://doi.org/10.1002/hipo.23130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21:5089–5098. https://doi.org/10.1523/JNEUROSCI.21-14-05089.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Myrum C, Rapp PR (2019) Isolation and quantification brain region-specific and cell subtype-specific histone (de)acetylation in cognitive neuroepigenetics. In: Methods in molecular biology: protein acetylation. Springer Nature, pp. 265–277

  18. Heyward FD, Sweatt JD (2015) DNA methylation in memory formation: emerging insights. Neuroscientist 21:475–489. https://doi.org/10.1177/1073858415579635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, Takemoto-Kimura S, Worley PF et al (2009) Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci 106:316–321. https://doi.org/10.1073/pnas.0806518106

    Article  PubMed  Google Scholar 

  20. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572. https://doi.org/10.1093/bioinformatics/btr167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70:813–829. https://doi.org/10.1016/j.neuron.2011.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11. https://doi.org/10.1186/1746-4811-3-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Struhl K, Segal E (2013) Determinants of nucleosome positioning. Nat Struct Mol Biol 20:267–273. https://doi.org/10.1038/nsmb.2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, Chen CC, Li W et al (2014) Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396–408. https://doi.org/10.1101/gad.233221.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Shin H, Song JS, Lei Y, Liu XS (2008) Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics 9:537. https://doi.org/10.1186/1471-2164-9-537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, Centeno TP, van Bebber F et al (2016) DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci 19:102–110. https://doi.org/10.1038/nn.4194

    Article  CAS  PubMed  Google Scholar 

  30. Sweatt JD (2016) Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. J Neurochem 137:312–330. https://doi.org/10.1111/jnc.13564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ianov L, Riva A, Kumar A, Foster TC (2017b) DNA methylation of synaptic genes in the prefrontal cortex is associated with aging and age-related cognitive impairment. Front Aging Neurosci 9:249. https://doi.org/10.3389/fnagi.2017.00249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peixoto L, Abel T (2013) The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology 38:62–76. https://doi.org/10.1038/npp.2012.86

    Article  CAS  PubMed  Google Scholar 

  33. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756. https://doi.org/10.1126/science.1186088

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903. https://doi.org/10.1038/ng.154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507. https://doi.org/10.1016/j.molcel.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  36. Wee CL, Teo S, Oey NE et al (2014) Nuclear Arc interacts with the histone acetyltransferase Tip60 to modify H4K12 acetylation. Eneuro 1. https://doi.org/10.1523/ENEURO.0019-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oey NE, Leung HW, Ezhilarasan R et al (2015) A neuronal activity-dependent dual function chromatin-modifying complex regulates Arc expression. eNeuro 2. https://doi.org/10.1523/ENEURO.0020-14.2015

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song S, Johnson F (2018) Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes (Basel) 9:201. https://doi.org/10.3390/genes9040201

    Article  CAS  Google Scholar 

  39. Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh J, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001. https://doi.org/10.1523/jneurosci.20-11-03993.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A et al (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52:437–444. https://doi.org/10.1016/j.neuron.2006.08.024

    Article  CAS  PubMed  Google Scholar 

  41. Penner MR, Roth TL, Chawla MK, Hoang LT, Roth ED, Lubin FD, Sweatt JD, Worley PF et al (2011) Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiol Aging 32:2198–2210. https://doi.org/10.1016/j.neurobiolaging.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  42. Masser DR, Hadad N, Porter HL, Mangold CA, Unnikrishnan A, Ford MM, Giles CB, Georgescu C et al (2017) Sexually divergent DNA methylation patterns with hippocampal aging. Aging Cell 16:1342–1352. https://doi.org/10.1111/acel.12681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hadad N, Masser DR, Logan S, Wronowski B, Mangold CA, Clark N, Otalora L, Unnikrishnan A et al (2016) Absence of genomic hypomethylation or regulation of cytosine-modifying enzymes with aging in male and female mice. Epigenetics Chromatin 9:30. https://doi.org/10.1186/s13072-016-0080-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sohn BH, Park IY, Lee JJ et al (2010) Functional switching of TGF-β1 signaling in liver cancer via epigenetic modulation of a single CpG site in TTP promoter. Gastroenterology 138:1898–1908.e12. https://doi.org/10.1053/j.gastro.2009.12.044

    Article  CAS  PubMed  Google Scholar 

  45. Dyrvig M, Hansen HH, Christiansen SH, Woldbye DP, Mikkelsen JD, Lichota J (2012) Epigenetic regulation of Arc and c-Fos in the hippocampus after acute electroconvulsive stimulation in the rat. Brain Res Bull 88:507–513. https://doi.org/10.1016/j.brainresbull.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  46. Castellano JF, Fletcher BR, Kelley-Bell B et al (2012) Age-related memory impairment is associated with disrupted multivariate epigenetic coordination in the hippocampus. PLoS One 7:e33249. https://doi.org/10.1371/journal.pone.0033249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Singh P, Thakur MK (2018) Histone deacetylase 2 inhibition attenuates downregulation of hippocampal plasticity gene expression during aging. Mol Neurobiol 55:2432–2442. https://doi.org/10.1007/s12035-017-0490-x

    Article  CAS  PubMed  Google Scholar 

  48. Gräff J, Tsai L-H (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14:97–111. https://doi.org/10.1038/nrn3427

    Article  CAS  PubMed  Google Scholar 

  49. Castellano JF, Fletcher BR, Patzke H, Long JM, Sewal A, Kim DH, Kelley-Bell B, Rapp PR (2014) Reassessing the effects of histone deacetylase inhibitors on hippocampal memory and cognitive aging. Hippocampus 24:1006–1016. https://doi.org/10.1002/hipo.22286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (2010) Histone methylation regulates memory formation. J Neurosci 30:3589–3599. https://doi.org/10.1523/JNEUROSCI.3732-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yassa MA, Lacy JW, Stark SM, et al (2010) Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus n/a–n/a. doi: https://doi.org/10.1002/hipo.20808

  52. Haberman RP, Koh MT, Gallagher M (2017) Heightened cortical excitability in aged rodents with memory impairment. Neurobiol Aging 54:144–151. https://doi.org/10.1016/j.neurobiolaging.2016.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898. https://doi.org/10.1016/j.cell.2008.02.022

    Article  CAS  PubMed  Google Scholar 

  54. Flores O, Deniz Ö, Soler-López M, Orozco M (2014) Fuzziness and noise in nucleosomal architecture. Nucleic Acids Res 42:4934–4946. https://doi.org/10.1093/nar/gku165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lai B, Gao W, Cui K, Xie W, Tang Q, Jin W, Hu G, Ni B et al (2018) Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 562:281–285. https://doi.org/10.1038/s41586-018-0567-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. DeGroote ML, Verschure PJ, Rots MG (2012) Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 40:10596–10613. https://doi.org/10.1093/nar/gks863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported entirely by the Intramural Research Program of the National Institutes of Health, National Institute on Aging. The authors are grateful to Elin Lehrmann, Ph.D., of the National Institute of Aging Intramural Research Program for expert bioinformatics advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Rapp.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myrum, C., Kittleson, J., De, S. et al. Survey of the Arc Epigenetic Landscape in Normal Cognitive Aging. Mol Neurobiol 57, 2727–2740 (2020). https://doi.org/10.1007/s12035-020-01915-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01915-4

Keywords

Navigation