Skip to main content
Log in

Activation of Peroxisome Proliferator-Activated Receptor-α Increases the Expression of Nuclear Receptor Related 1 Protein (Nurr1) in Dopaminergic Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nuclear receptor related 1 protein (Nurr1) is an important transcription factor required for differentiation and maintenance of midbrain dopaminergic (DA) neurons. Since decrease in Nurr1 function either due to diminished expression or rare mutation is associated with Parkinson’s disease (PD), upregulation of Nurr1 may be beneficial for PD. However, such mechanisms are poorly understood. This study underlines the importance of peroxisome proliferator-activated receptor (PPAR)α in controlling the transcription of Nurr1. Our mRNA analyses followed by different immunoassays clearly indicated that PPARα agonist gemfibrozil strongly upregulated the expression of Nurr1 in wild-type, but not PPARα−/−, DA neurons. Moreover, identification of conserved PPRE in the promoter of Nurr1 gene followed by chromatin immunoprecipitation analysis, PPRE luciferase assay, and manipulation of Nurr1 gene by viral transduction of different PPARα plasmids confirmed that PPARα was indeed involved in the expression of Nurr1. Finally, oral administration of gemfibrozil increased Nurr1 expression in vivo in nigra of wild-type, but not PPARα−/−, mice identifying PPARα as a novel regulator of Nurr1 expression and associated protection of DA neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roy A, Pahan K (2011) Prospects of statins in Parkinson disease. Neuroscientist 17(3):244–255. https://doi.org/10.1177/1073858410385006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanyal J, Chakraborty DP, Sarkar B, Banerjee TK, Mukherjee SC, Ray BC, Rao VR (2010) Environmental and familial risk factors of Parkinsons disease: case-control study. Can J Neurol Sci Le journal canadien des sciences neurologiques 37(5):637–642

    Article  Google Scholar 

  3. Pinto F, Mazza S (1971) Psychic symptoms in levodopa treatment of Parkinsons’ disease. II. Riv Neurobiol 17(2):155–159

    CAS  PubMed  Google Scholar 

  4. Smith ML, King J, Dent L, Mackey V, Muthian G, Griffin B, Charlton CG (2014) Effects of acute and sub-chronic L-dopa therapy on striatal L-dopa methylation and dopamine oxidation in an MPTP mouse model of Parkinsons disease. Life Sci 110(1):1–7. https://doi.org/10.1016/j.lfs.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  5. Dong J, Li S, Mo JL, Cai HB, Le WD (2016) Nurr1-based therapies for Parkinson’s disease. CNS Neurosci Ther 22(5):351–359. https://doi.org/10.1111/cns.12536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grimes DA, Han F, Panisset M, Racacho L, Xiao F, Zou R, Westaff K, Bulman DE (2006) Translated mutation in the Nurr1 gene as a cause for Parkinson’s disease. Mov Disord 21(7):906–909. https://doi.org/10.1002/mds.20820

    Article  PubMed  Google Scholar 

  7. Arenas E (2005) Engineering a dopaminergic phenotype in stem/precursor cells: role of Nurr1, glia-derived signals, and Wnts. Ann N Y Acad Sci 1049:51–66. https://doi.org/10.1196/annals.1334.007

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez-Traver E, Solis O, Diaz-Guerra E, Ortiz O, Vergano-Vera E, Mendez-Gomez HR, Garcia-Sanz P, Moratalla R et al (2016) Role of Nurr1 in the generation and differentiation of dopaminergic neurons from stem cells. Neurotox Res 30(1):14–31. https://doi.org/10.1007/s12640-015-9586-0

    Article  CAS  PubMed  Google Scholar 

  9. Alavian KN, Jeddi S, Naghipour SI, Nabili P, Licznerski P, Tierney TS (2014) The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed. J Biomed Sci 21:27. https://doi.org/10.1186/1423-0127-21-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bae EJ, Lee HS, Park CH, Lee SH (2009) Orphan nuclear receptor Nurr1 induces neuron differentiation from embryonic cortical precursor cells via an extrinsic paracrine mechanism. FEBS Lett 583(9):1505–1510. https://doi.org/10.1016/j.febslet.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  11. Kim CH, Han BS, Moon J, Kim DJ, Shin J, Rajan S, Nguyen QT, Sohn M et al (2015) Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease. Proc Natl Acad Sci U S A 112(28):8756–8761. https://doi.org/10.1073/pnas.1509742112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu W, Gao Y, Chang N (2017) Nurr1 overexpression exerts neuroprotective and anti-inflammatory roles via down-regulating CCL2 expression in both in vivo and in vitro Parkinson’s disease models. Biochem Biophys Res Commun 482(4):1312–1319. https://doi.org/10.1016/j.bbrc.2016.12.034

    Article  CAS  PubMed  Google Scholar 

  13. Oh SM, Chang MY, Song JJ, Rhee YH, Joe EH, Lee HS, Yi SH, Lee SH (2016) Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol Med 8(2):171. https://doi.org/10.15252/emmm.201506162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Bjorklund A (2012) Alpha-synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med 4(163):163ra156. https://doi.org/10.1126/scitranslmed.3004676

    Article  CAS  PubMed  Google Scholar 

  15. Hammond SL, Safe S, Tjalkens RB (2015) A novel synthetic activator of Nurr1 induces dopaminergic gene expression and protects against 6-hydroxydopamine neurotoxicity in vitro. Neurosci Lett 607:83–89. https://doi.org/10.1016/j.neulet.2015.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Miranda BR, Popichak KA, Hammond SL, Jorgensen BA, Phillips AT, Safe S, Tjalkens RB (2015) The Nurr1 activator 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane blocks inflammatory gene expression in BV-2 microglial cells by inhibiting nuclear factor kappaB. Mol Pharmacol 87(6):1021–1034. https://doi.org/10.1124/mol.114.095398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith GA, Rocha EM, Rooney T, Barneoud P, McLean JR, Beagan J, Osborn T, Coimbra M et al (2015) A Nurr1 agonist causes neuroprotection in a Parkinson’s disease lesion model primed with the toll-like receptor 3 dsRNA inflammatory stimulant poly(I:C). PLoS One 10(3):e0121072. https://doi.org/10.1371/journal.pone.0121072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oh SM, Chang MY, Song JJ, Rhee YH, Joe EH, Lee HS, Yi SH, Lee SH (2015) Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO molecular medicine 7(5):510–525. https://doi.org/10.15252/emmm.201404610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roy A, Pahan K (2013) Ankyrin repeat and BTB/POZ domain containing protein-2 inhibits the aggregation of alpha-synuclein: implications for Parkinson’s disease. FEBS Lett 587(21):3567–3574. https://doi.org/10.1016/j.febslet.2013.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Modi KK, Rangasamy SB, Dasarathi S, Roy A, Pahan K (2016) Cinnamon converts poor learning mice to good learners: implications for memory improvement. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 11(4):693–707. https://doi.org/10.1007/s11481-016-9693-6

    Article  Google Scholar 

  21. Chandra G, Kundu M, Rangasamy SB, Dasarathy S, Ghosh S, Watson R, Pahan K (2018) Increase in mitochondrial biogenesis in neuronal cells by RNS60, a physically-modified saline, via phosphatidylinositol 3-kinase-mediated upregulation of PGC1alpha. J Neuroimmune Pharmacol 13(2):143–162. https://doi.org/10.1007/s11481-017-9771-4

    Article  PubMed  Google Scholar 

  22. Roy A, Kundu M, Jana M, Mishra RK, Yung Y, Luan CH, Gonzalez FJ, Pahan K (2016) Identification and characterization of PPARalpha ligands in the hippocampus. Nat Chem Biol 12(12):1075–1083. https://doi.org/10.1038/nchembio.2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corbett GT, Gonzalez FJ, Pahan K (2015) Activation of peroxisome proliferator-activated receptor alpha stimulates ADAM10-mediated proteolysis of APP. Proc Natl Acad Sci U S A 112(27):8445–8450. https://doi.org/10.1073/pnas.1504890112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghosh A, Pahan K (2012) Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders. J Biol Chem 287(32):27189–27203. https://doi.org/10.1074/jbc.M112.346932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roy A, Jana M, Kundu M, Corbett GT, Rangaswamy SB, Mishra RK, Luan CH, Gonzalez FJ et al (2015) HMG-CoA reductase inhibitors bind to PPARalpha to upregulate neurotrophin expression in the brain and improve memory in mice. Cell Metab 22(2):253–265. https://doi.org/10.1016/j.cmet.2015.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pahan K, Jana M, Liu X, Taylor BS, Wood C, Fischer SM (2002) Gemfibrozil, a lipid-lowering drug, inhibits the induction of nitric-oxide synthase in human astrocytes. J Biol Chem 277(48):45984–45991. https://doi.org/10.1074/jbc.M200250200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jana M, Jana A, Liu X, Ghosh S, Pahan K (2007) Involvement of phosphatidylinositol 3-kinase-mediated up-regulation of I kappa B alpha in anti-inflammatory effect of gemfibrozil in microglia. J Immunol (Baltimore, Md :1950) 179(6):4142–4152

    Article  CAS  Google Scholar 

  28. Roy A, Pahan K (2009) Gemfibrozil, stretching arms beyond lipid lowering. Immunopharmacol Immunotoxicol 31(3):339–351. https://doi.org/10.1080/08923970902785253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu J, Storer PD, Chavis JA, Racke MK, Drew PD (2005) Agonists for the peroxisome proliferator-activated receptor-alpha and the retinoid X receptor inhibit inflammatory responses of microglia. J Neurosci Res 81(3):403–411. https://doi.org/10.1002/jnr.20518

    Article  CAS  PubMed  Google Scholar 

  30. Terraf P, Babaloo H, Kouhsari SM (2017) Directed differentiation of dopamine-secreting cells from Nurr1/GPX1 expressing murine embryonic stem cells cultured on Matrigel-coated PCL scaffolds. Mol Neurobiol 54(2):1119–1128. https://doi.org/10.1007/s12035-016-9726-4

    Article  CAS  PubMed  Google Scholar 

  31. Kim T, Song JJ, Puspita L, Valiulahi P, Shim JW, Lee SH (2017) In vitro generation of mature midbrain-type dopamine neurons by adjusting exogenous Nurr1 and Foxa2 expressions to their physiologic patterns. Exp Mol Med 49(3):e300. https://doi.org/10.1038/emm.2016.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Decressac M, Volakakis N, Bjorklund A, Perlmann T (2013) NURR1 in Parkinson disease—from pathogenesis to therapeutic potential. Nat Rev Neurol 9(11):629–636. https://doi.org/10.1038/nrneurol.2013.209

    Article  CAS  PubMed  Google Scholar 

  33. Bensinger SJ, Tontonoz P (2009) A Nurr1 pathway for neuroprotection. Cell 137(1):26–28. https://doi.org/10.1016/j.cell.2009.03.024

    Article  CAS  PubMed  Google Scholar 

  34. Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ (2001) Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 76(5):1565–1572

    Article  CAS  Google Scholar 

  35. Green AL, Zhan L, Eid A, Zarbl H, Guo GL, Richardson JR (2017) Valproate increases dopamine transporter expression through histone acetylation and enhanced promoter binding of Nurr1. Neuropharmacology 125:189–196. https://doi.org/10.1016/j.neuropharm.2017.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carmine A, Buervenich S, Galter D, Jonsson EG, Sedvall GC, Farde L, Gustavsson JP, Bergman H et al (2003) NURR1 promoter polymorphisms: Parkinson’s disease, schizophrenia, and personality traits. Am J Med Genet B Neuropsychiatr Genet 120B(1):51–57. https://doi.org/10.1002/ajmg.b.20033

    Article  PubMed  Google Scholar 

  37. Tan EK, Chung H, Chandran VR, Tan C, Shen H, Yew K, Pavanni R, Puvan KA et al (2004) Nurr1 mutational screen in Parkinson’s disease. Mov Disord 19(12):1503–1505. https://doi.org/10.1002/mds.20246

    Article  PubMed  Google Scholar 

  38. Buervenich S, Carmine A, Arvidsson M, Xiang F, Zhang Z, Sydow O, Jonsson EG, Sedvall GC et al (2000) NURR1 mutations in cases of schizophrenia and manic-depressive disorder. Am J Med Genet 96(6):808–813

    Article  CAS  Google Scholar 

  39. Chu Y, Le W, Kompoliti K, Jankovic J, Mufson EJ, Kordower JH (2006) Nurr1 in Parkinson’s disease and related disorders. J Comp Neurol 494(3):495–514. https://doi.org/10.1002/cne.20828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jacobsen KX, MacDonald H, Lemonde S, Daigle M, Grimes DA, Bulman DE, Albert PR (2008) A Nurr1 point mutant, implicated in Parkinson’s disease, uncouples ERK1/2-dependent regulation of tyrosine hydroxylase transcription. Neurobiol Dis 29(1):117–122. https://doi.org/10.1016/j.nbd.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  41. Le W, Pan T, Huang M, Xu P, Xie W, Zhu W, Zhang X, Deng H et al (2008) Decreased NURR1 gene expression in patients with Parkinson’s disease. J Neurol Sci 273(1–2):29–33. https://doi.org/10.1016/j.jns.2008.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fan X, Luo G, Ming M, Pu P, Li L, Yang D, Le W (2009) Nurr1 expression and its modulation in microglia. Neuroimmunomodulation 16(3):162–170. https://doi.org/10.1159/000204229

    Article  CAS  PubMed  Google Scholar 

  43. Lallier SW, Graf AE, Waidyarante GR, Rogers LK (2016) Nurr1 expression is modified by inflammation in microglia. Neuroreport 27(15):1120–1127. https://doi.org/10.1097/WNR.0000000000000665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang YX, Latchman DS (2008) Nurr1 transcriptionally regulates the expression of alpha-synuclein. Neuroreport 19(8):867–871. https://doi.org/10.1097/WNR.0b013e3282ffda48

    Article  CAS  PubMed  Google Scholar 

  45. Spathis AD, Asvos X, Ziavra D, Karampelas T, Topouzis S, Cournia Z, Qing X, Alexakos P et al (2017) Nurr1:RXRalpha heterodimer activation as monotherapy for Parkinson’s disease. Proc Natl Acad Sci U S A 114(15):3999–4004. https://doi.org/10.1073/pnas.1616874114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59. https://doi.org/10.1016/j.cell.2009.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Galleguillos D, Fuentealba JA, Gomez LM, Saver M, Gomez A, Nash K, Burger C, Gysling K et al (2010) Nurr1 regulates RET expression in dopamine neurons of adult rat midbrain. J Neurochem 114(4):1158–1167. https://doi.org/10.1111/j.1471-4159.2010.06841.x

    Article  CAS  PubMed  Google Scholar 

  48. Wang T, Hay JC (2015) Alpha-synuclein toxicity in the early secretory pathway: how it drives neurodegeneration in Parkinsons disease. Front Neurosci 9:433. https://doi.org/10.3389/fnins.2015.00433

    Article  PubMed  PubMed Central  Google Scholar 

  49. Roy A, Pahan K (2015) PPARalpha signaling in the hippocampus: crosstalk between fat and memory. J Neuroimmune Pharmacol 10(1):30–34. https://doi.org/10.1007/s11481-014-9582-9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Roy A, Jana M, Corbett GT, Ramaswamy S, Kordower JH, Gonzalez FJ, Pahan K (2013) Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor alpha. Cell Rep 4(4):724–737. https://doi.org/10.1016/j.celrep.2013.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yin C, Deng Y, Liu Y, Gao J, Yan L, Gong Q (2018) Icariside II ameliorates cognitive impairments induced by chronic cerebral hypoperfusion by inhibiting the amyloidogenic pathway: involvement of BDNF/TrkB/CREB signaling and up-regulation of PPARalpha and PPARgamma in rats. Front Pharmacol 9:1211. https://doi.org/10.3389/fphar.2018.01211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sekulic-Jablanovic M, Petkovic V, Wright MB, Kucharava K, Huerzeler N, Levano S, Brand Y, Leitmeyer K et al (2017) Effects of peroxisome proliferator activated receptors (PPAR)-gamma and -alpha agonists on cochlear protection from oxidative stress. PLoS One 12(11):e0188596. https://doi.org/10.1371/journal.pone.0188596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vazquez M, Merlos M, Adzet T, Laguna JC (1996) Decreased susceptibility to copper-induced oxidation of rat-lipoproteins after fibrate treatment: influence of fatty acid composition. Br J Pharmacol 117(6):1155–1162

    Article  CAS  Google Scholar 

  54. Gouedard C, Koum-Besson N, Barouki R, Morel Y (2003) Opposite regulation of the human paraoxonase-1 gene PON-1 by fenofibrate and statins. Mol Pharmacol 63(4):945–956

    Article  CAS  Google Scholar 

  55. Mohagheghi F, Khalaj L, Ahmadiani A, Rahmani B (2013) Gemfibrozil pretreatment affecting antioxidant defense system and inflammatory, but not Nrf-2 signaling pathways resulted in female neuroprotection and male neurotoxicity in the rat models of global cerebral ischemia-reperfusion. Neurotox Res 23(3):225–237. https://doi.org/10.1007/s12640-012-9338-3

    Article  CAS  PubMed  Google Scholar 

  56. Corbett GT, Roy A, Pahan K (2012) Gemfibrozil, a lipid-lowering drug, upregulates IL-1 receptor antagonist in mouse cortical neurons: implications for neuronal self-defense. Journal of immunology (Baltimore, Md : 1950) 189(2):1002–1013. https://doi.org/10.4049/jimmunol.1102624

    Article  CAS  Google Scholar 

  57. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a merit award from Veteran Affairs (I01BX003033) and a grant (NS083054) from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalipada Pahan.

Ethics declarations

Animal maintenance and experimental protocols were approved by the Rush University Animal Care Committee. All animal procedures were conducted in accordance with the Rush University IUCUC protocol (15-056).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottschalk, C.G., Roy, A., Jana, M. et al. Activation of Peroxisome Proliferator-Activated Receptor-α Increases the Expression of Nuclear Receptor Related 1 Protein (Nurr1) in Dopaminergic Neurons. Mol Neurobiol 56, 7872–7887 (2019). https://doi.org/10.1007/s12035-019-01649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01649-y

Keywords

Navigation