Skip to main content

Advertisement

Log in

Trichloroethylene and Parkinson’s Disease: Risk Assessment

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the mechanism of action and extent of selective dopaminergic neurodegeneration caused by exposure to trichloroethylene (TCE) leading to the endogenous formation of the neurotoxin 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) in rodents. Beginning at 3 months of age, male C57BL/6 mice received oral TCE dissolved in vehicle for 8 months. Dopaminergic neuronal loss was assessed by nigral tyrosine hydroxylase (TH) immunoreactivity. Selective dopaminergic neurodegeneration was determined based on histological analysis of non-dopaminergic neurons in the brain. Behavioral assays were evaluated using open field activity and rotarod tests. Mitochondrial complex I activity, oxidative stress markers, and microglial activation were also examined in the substantia nigra. The level of TaClo was detected using HPLC-electrospray ionization tandem mass spectrometry. Dopaminergic neurotoxicity of TaClo was determined in midbrain organotypic cultures from rat pups. Following 8 months of TCE treatment, there was a progressive and selective loss of 50% of the dopaminergic neurons in mouse substantia nigra (SN) and about 50% loss of dopamine and 72% loss of 3,4-dihydroxyphenylacetic acid in the striatum, respectively. In addition, motor deficits, mitochondrial impairment, oxidative stress, and inflammation were measured. TaClo content was quantified in the brain after TCE treatment. In organotypic cultures, TaClo rather than TCE induced dopaminergic neuronal loss, similar to MPP+. TCE exposure may stimulate the endogenous formation of TaClo, which is responsible for dopaminergic neurodegeneration. However, even prolonged administration of TCE was insufficient for producing a greater than 50% loss of nigral dopamine neurons, indicating that additional co-morbid factors would be needed for mimicking the profound loss of dopamine neurons seen in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

TCE:

Trichloroethylene

TaClo:

1-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline

TH:

Tyrosine hydroxylase

References

  1. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1(3):249–254. https://doi.org/10.1016/0165-1781(79)90006-4

    Article  PubMed  CAS  Google Scholar 

  2. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80(14):4546–4550. https://doi.org/10.1073/pnas.80.14.4546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hertzman C, Wiens M, Bowering D, Snow B, Calne D (1990) Parkinson’s disease: a case-control study of occupational and environmental risk factors. Am J Ind Med 17(3):349–355. https://doi.org/10.1002/ajim.4700170307

    Article  PubMed  CAS  Google Scholar 

  4. Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology 48(6):1583–1588. https://doi.org/10.1212/WNL.48.6.1583

    Article  PubMed  CAS  Google Scholar 

  5. Tanner CM (1992) Epidemiology of Parkinson’s disease. Neurol Clin 10(2):317–329

    Article  PubMed  CAS  Google Scholar 

  6. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22(16):7006–7015 20026721

    Article  PubMed  CAS  Google Scholar 

  7. Gash DM, Rutland K, Hudson NL, Sullivan PG, Bing G, Cass WA, Pandya JD, Liu M et al (2008) Trichloroethylene: parkinsonism and complex 1 mitochondrial neurotoxicity. Ann Neurol 63(2):184–192. https://doi.org/10.1002/ana.21288

    Article  PubMed  Google Scholar 

  8. Goldman SM, Quinlan PJ, Ross GW, Marras C, Meng C, Bhudhikanok GS, Comyns K, Korell M et al (2012) Solvent exposures and Parkinson disease risk in twins. Ann Neurol 71(6):776–784. https://doi.org/10.1002/ana.22629

    Article  PubMed  CAS  Google Scholar 

  9. Liu M, Choi DY, Hunter RL, Pandya JD, Cass WA, Sullivan PG, Kim HC, Gash DM et al (2010) Trichloroethylene induces dopaminergic neurodegeneration in Fischer 344 rats. J Neurochem 112(3):773–783. https://doi.org/10.1111/j.1471-4159.2009.06497.x

    Article  PubMed  CAS  Google Scholar 

  10. National Research Council (2006) Assessing the human health risks of trichloroethylene; key scientific issues. The National Academies Press, Washington

    Google Scholar 

  11. Guehl D, Bezard E, Dovero S, Boraud T, Bioulac B, Gross C (1999) Trichloroethylene and parkinsonism: a human and experimental observation. Eur J Neurol 6(5):609–611. https://doi.org/10.1046/j.1468-1331.1999.650609.x

    Article  PubMed  CAS  Google Scholar 

  12. Kochen W, Kohlmüller D, De Biasi P, Ramsay R (2003) The endogeneous formation of highly chlorinated tetrahydro-beta-carbolines as a possible causative mechanism in idiopathic Parkinson’s disease. Adv Exp Med Biol 527:253–263. https://doi.org/10.1007/978-1-4615-0135-0_29

    Article  PubMed  CAS  Google Scholar 

  13. Bringmann G, God R, Feineis D, Janetzky B, Reichmann H (1995a) TaClo as a neurotoxic lead: improved synthesis, stereochemical analysis, and inhibition of the mitochondrial respiratory chain. J Neural Transm Suppl 46:245–254

    PubMed  CAS  Google Scholar 

  14. Riederer P, Foley P, Bringmann G, Feineis D, Brückner R, Gerlach M (2002) Biochemical and pharmacological characterization of 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline: a biologically relevant neurotoxin? Eur J Pharmacol 442(1–2):1–16. https://doi.org/10.1016/S0014-2999(02)01308-0

    Article  PubMed  CAS  Google Scholar 

  15. Liu M, Hunter R, Nguyen XV, Kim HC, Bing G (2008) Microsomal epoxide hydrolase deletion enhances tyrosine hydroxylase phosphorylation in mice after MPTP treatment. J Neurosci Res 86(12):2792–2801. https://doi.org/10.1002/jnr.21725

    Article  PubMed  CAS  Google Scholar 

  16. Shin EJ, Jeong JH, Chung CK, Kim DJ, Wie MB, Park ES, Chung YH, Nam Y et al (2015) Ceruloplasmin is an endogenous protectant against kainate neurotoxicity. Free Radic Biol Med 84:355–372. https://doi.org/10.1016/j.freeradbiomed.2015.03.031

    Article  PubMed  CAS  Google Scholar 

  17. Jung BD, Shin EJ, Nguyen XK, Jin CH, Bach JH, Park SJ, Nah SY, Wie MB et al (2010) Potentiation of methamphetamine neurotoxicity by intrastriatal lipopolysaccharide administration. Neurochem Int 56(2):229–244. https://doi.org/10.1016/j.neuint.2009.10.005

    Article  PubMed  CAS  Google Scholar 

  18. Shin EJ, Shin SW, Nguyen TT, Park DH, Wie MB, Jang CG et al (2014) Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol Neurobiol 49(3):1400–1421. https://doi.org/10.1007/s12035-013-8617-1

    Article  PubMed  CAS  Google Scholar 

  19. Kim BK, Tran HY, Shin EJ, Lee C, Chung YH, Jeong JH, Bach JH, Kim WK et al (2013) IL-6 attenuates trimethyltin-induced cognitive dysfunction via activation of JAK2/STAT3, M1 mAChR and ERK signaling network. Cell Signal 25(6):1348–1360. https://doi.org/10.1016/j.cellsig.2013.02.017

    Article  PubMed  CAS  Google Scholar 

  20. Bringmann G, Friedrich H, Birner G, Koob M, Sontag KH, Heim C, Kolasiewicz W, Fähr S et al (1996) Endogenous alkaloids in man. XXVI. Determination of the dopaminergic neurotoxin 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) in biological samples using gas chromatography with selected ion monitoring. J Chromatogr B Biomed Appl 687(2):337–348. https://doi.org/10.1016/S0378-4347(96)00255-1

    Article  PubMed  CAS  Google Scholar 

  21. Bringmann G, God R, Fähr S, Feineis D, Fornadi K, Fornadi F (1999) Identification of the dopaminergic neurotoxin 1-trichloromethyl-1,2, 3,4-tetrahydro-beta-carboline in human blood after intake of the hypnotic chloral hydrate. Anal Biochem 270(1):167–175. https://doi.org/10.1006/abio.1999.4088

    Article  PubMed  CAS  Google Scholar 

  22. Bringmann G, Münchbach M, Feineis D, Messer K, Diem S, Herderich M, Clement HW, Stichel-Gunkel C et al (2002) Endogenous alkaloids in man. XXXVIII. “Chiral” and “achiral” determination of the neurotoxin TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline) from blood and urine samples by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 767(2):321–332

    Article  PubMed  CAS  Google Scholar 

  23. Bringmann G, Hille A (1990) Endogenous alkaloids in man, VII: 1-trichloromethyl-1,2,3,4-tetrahydro-β-carbolin—a potential chloral-derived indol alkaloid in man. Arch Pharm (Weinheim) 323(9):567–569. https://doi.org/10.1002/ardp.19903230903

    Article  CAS  Google Scholar 

  24. Fernandes MF, Matthys D, Hryhorczuk C, Sharma S, Mogra S, Alquier T, Fulton S (2015) Leptin suppresses the rewarding effects of running via STAT3 signaling in dopamine neurons. Cell Metab 22(4):741–749. https://doi.org/10.1016/j.cmet.2015.08.003

    Article  PubMed  CAS  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  26. Jaumotte JD, Zigmond MJ (2005) Dopaminergic innervation of forebrain by ventral mesencephalon in organotypic slice co-cultures: effects of GDNF. Brain Res Mol Brain Res 134(1):139–146. https://doi.org/10.1016/j.molbrainres.2004.11.018

    Article  PubMed  CAS  Google Scholar 

  27. Plenz D, Aertsen A (1996) Neural dynamics in cortex-striatum co-cultures—II. Spatiotemporal characteristics of neuronal activity. Neuroscience 70(4):893–924. https://doi.org/10.1016/0306-4522(95)00405-X

    Article  PubMed  CAS  Google Scholar 

  28. Forkert PG, Lash LH, Nadeau V, Tardif R, Simmonds A (2002) Metabolism and toxicity of trichloroethylene in epididymis and testis. Toxicol Appl Pharmacol 182(3):244–254. https://doi.org/10.1006/taap.2002.9421

    Article  PubMed  CAS  Google Scholar 

  29. Scott CS, Cogliano VJ (2000) Trichloroethylene and cancer: epidemiologic evidence. Environ Health Perspect 108(Suppl 2):159–160. https://doi.org/10.1289/ehp.00108s2159

    Article  PubMed Central  PubMed  Google Scholar 

  30. Bringmann G, God R, Feineis D, Wesemann W, Riederer P, Rausch WD, Reichmann H, Sontag KH (1995b) The TaClo concept: 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo), a new toxin for dopaminergic neurons. J Neural Transm Suppl 46:235–244

    PubMed  CAS  Google Scholar 

  31. D’Astous M, Morissette M, Callier S, Di Paolo T (2005) Regulation of striatal preproenkephalin mRNA levels in MPTP-lesioned mice treated with estradiol. J Neurosci Res 80(1):138–144. https://doi.org/10.1002/jnr.20412

    Article  PubMed  CAS  Google Scholar 

  32. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR (2009) PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci 29(5):954–963. https://doi.org/10.1111/j.1460-9568.2009.06657.x

    Article  PubMed  Google Scholar 

  33. Ahn S, Song TJ, Park SU, Jeon S, Kim J, Oh JY, Jang J, Hong S et al (2017) Effects of a combination treatment of KD5040 and (L)-dopa in a mouse model of Parkinson’s disease. BMC Complement Altern Med 17(1):220. https://doi.org/10.1186/s12906-017-1731-2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nisbet AP, Foster OJ, Kingsbury A, Eve DJ, Daniel SE, Marsden CD, Lees AJ (1995) Preproenkephalin and preprotachykinin messenger RNA expression in normal human basal ganglia and in Parkinson’s disease. Neuroscience 66(2):361–376. https://doi.org/10.1016/0306-4522(94)00606-6

    Article  PubMed  CAS  Google Scholar 

  35. Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4(3):257–269. https://doi.org/10.1016/1055-8330(95)90015-2

    Article  PubMed  CAS  Google Scholar 

  36. Cleeter MW, Cooper JM, Schapira AH (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 58(2):786–789. https://doi.org/10.1111/j.1471-4159.1992.tb09789.x

    Article  PubMed  CAS  Google Scholar 

  37. Sundström E, Luthman J, Goldstein M, Jonsson G (1988) Time course of MPTP-induced degeneration of the nigrostriatal dopamine system in C57 BL/6 mice. Brain Res Bull 21(2):257–263. https://doi.org/10.1016/0361-9230(88)90240-7

    Article  PubMed  Google Scholar 

  38. Carman LS, Gage FH, Shults CW (1991) Partial lesion of the substantia nigra: relation between extent of lesion and rotational behavior. Brain Res 553(2):275–283. https://doi.org/10.1016/0006-8993(91)90835-J

    Article  PubMed  CAS  Google Scholar 

  39. Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KS (1989) A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res 494(2):285–293. https://doi.org/10.1016/0006-8993(89)90597-0

    Article  PubMed  CAS  Google Scholar 

  40. Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59(2):401–415. https://doi.org/10.1016/0306-4522(94)90605-X

    Article  PubMed  CAS  Google Scholar 

  41. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110. https://doi.org/10.1016/0014-2999(68)90164-7

    Article  PubMed  CAS  Google Scholar 

  42. Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175(2):303–317. https://doi.org/10.1006/exnr.2002.7891

    Article  PubMed  CAS  Google Scholar 

  43. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277(3):1641–1644. https://doi.org/10.1074/jbc.C100560200

    Article  PubMed  CAS  Google Scholar 

  44. Day BJ, Patel M, Calavetta L, Chang LY, Stamler JS (1999) A mechanism of paraquat toxicity involving nitric oxide synthase. Proc Natl Acad Sci U S A 96(22):12760–12765. https://doi.org/10.1073/pnas.96.22.12760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Shimizu K, Ohtaki K, Matsubara K, Aoyama K, Uezono T, Saito O, Suno M, Ogawa K et al (2001) Carrier-mediated processes in blood-brain barrier penetration and neural uptake of paraquat. Brain Res 906(1–2):135–142. https://doi.org/10.1016/S0006-8993(01)02577-X

    Article  PubMed  CAS  Google Scholar 

  46. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306. https://doi.org/10.1038/81834

    Article  PubMed  CAS  Google Scholar 

  47. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375. https://doi.org/10.1016/0166-2236(89)90074-X

    Article  PubMed  CAS  Google Scholar 

  48. Lang AE, Lozano AM (1998) Parkinson’s disease. Second of two parts. N Engl J Med 339(16):1130–1143. https://doi.org/10.1056/NEJM199810153391607

    Article  PubMed  CAS  Google Scholar 

  49. Hutchison WD, Lozano AM, Davis KD, Saint-Cyr JA, Lang AE, Dostrovsky JO (1994) Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. Neuroreport 5(12):1533–1537. https://doi.org/10.1097/00001756-199407000-00031

    Article  PubMed  CAS  Google Scholar 

  50. Hutchinson WD, Levy R, Dostrovsky JO, Lozano AM, Lang AE (1997) Effects of apomorphine on globus pallidus neurons in parkinsonian patients. Ann Neurol 42(5):767–775. https://doi.org/10.1002/ana.410420513

    Article  PubMed  CAS  Google Scholar 

  51. Waters CM, Peck R, Rossor M, Reynolds GP, Hunt SP (1988) Immunocytochemical studies on the basal ganglia and substantia nigra in Parkinson’s disease and Huntington’s chorea. Neuroscience 25(2):419–438. https://doi.org/10.1016/0306-4522(88)90249-7

    Article  PubMed  CAS  Google Scholar 

  52. Sivam SP (1991) Dopamine dependent decrease in enkephalin and substance P levels in basal ganglia regions of postmortem parkinsonian brains. Neuropeptides 18(4):201–207. https://doi.org/10.1016/0143-4179(91)90148-C

    Article  PubMed  CAS  Google Scholar 

  53. Sivam SP, Breese GR, Krause JE, Napier TC, Mueller RA, Hong JS (1987) Neonatal and adult 6-hydroxydopamine-induced lesions differentially alter tachykinin and enkephalin gene expression. J Neurochem 49(5):1623–1633. https://doi.org/10.1111/j.1471-4159.1987.tb01036.x

    Article  PubMed  CAS  Google Scholar 

  54. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432. https://doi.org/10.1126/science.2147780

    Article  PubMed  CAS  Google Scholar 

  55. Li SJ, Jiang HK, Stachowiak MS, Hudson PM, Owyang V, Nanry K, Tilson HA, Hong JS (1990) Influence of nigrostriatal dopaminergic tone on the biosynthesis of dynorphin and enkephalin in rat striatum. Brain Res Mol Brain Res 8(3):219–225. https://doi.org/10.1016/0169-328X(90)90020-E

    Article  PubMed  CAS  Google Scholar 

  56. Jiang HK, McGinty JF, Hong JS (1990) Differential modulation of striatonigral dynorphin and enkephalin by dopamine receptor subtypes. Brain Res 507(1):57–64. https://doi.org/10.1016/0006-8993(90)90522-D

    Article  PubMed  CAS  Google Scholar 

  57. Gerfen CR, McGinty JF, Young WS 3rd (1991) Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J Neurosci 11(4):1016–1031

    Article  PubMed  CAS  Google Scholar 

  58. Meissner W, Dovero S, Bioulac B, Gross CE, Bezard E (2003) Compensatory regulation of striatal neuropeptide gene expression occurs before changes in metabolic activity of basal ganglia nuclei. Neurobiol Dis 13(1):46–54. https://doi.org/10.1016/S0969-9961(03)00011-1

    Article  PubMed  CAS  Google Scholar 

  59. Wedekind F, Oskamp A, Lang M, Hawlitschka A, Zilles K, Wree A, Bauer A (2017) Intrastriatal administration of botulinum neurotoxin A normalizes striatal D(2) R binding and reduces striatal D(1) R binding in male hemiparkinsonian rats. J Neurosci Res 96(1):75–86. https://doi.org/10.1002/jnr.24110

    Article  PubMed  CAS  Google Scholar 

  60. Qian L, Flood PM, Hong JS (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm (Vienna) 117(8):971–979. https://doi.org/10.1007/s00702-010-0428-1

    Article  CAS  Google Scholar 

  61. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81(6):1285–1297. https://doi.org/10.1046/j.1471-4159.2002.00928.x

    Article  PubMed  CAS  Google Scholar 

  62. Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24(8):395–401. https://doi.org/10.1016/S0165-6147(03)00176-7

    Article  PubMed  CAS  Google Scholar 

  63. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. https://doi.org/10.1038/nrn2038

    Article  PubMed  CAS  Google Scholar 

  64. Zhang D, Hu X, Qian L, O’Callaghan JP, Hong JS (2010) Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 41(2–3):232–241. https://doi.org/10.1007/s12035-010-8098-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Colombo E, Farina C (2016) Astrocytes: key regulators of Neuroinflammation. Trends Immunol 37(9):608–620. https://doi.org/10.1016/j.it.2016.06.006

    Article  PubMed  CAS  Google Scholar 

  66. Gerlach M, Xiao AY, Heim C, Lan J, God R, Feineis D, Bringmann G, Riederer P et al (1998) 1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline increases extracellular serotonin and stimulates hydroxyl radical production in rats. Neurosci Lett 257(1):17–20. https://doi.org/10.1016/S0304-3940(98)00791-5

    Article  PubMed  CAS  Google Scholar 

  67. Grote C, Clement HW, Wesemann W, Bringmann G, Feineis D, Riederer P, Sontag KH (1995) Biochemical lesions of the nigrostriatal system by TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline) and derivatives. J Neural Transm Suppl 46:275–281

    PubMed  CAS  Google Scholar 

  68. Riederer F, Luborzewski A, God R, Bringmann G, Scholz J, Feineis D, Moser A (2002) Modification of tyrosine hydroxylase activity by chloral derived beta-carbolines in vitro. J Neurochem 81(4):814–819. https://doi.org/10.1046/j.1471-4159.2002.00875.x

    Article  PubMed  CAS  Google Scholar 

  69. Akundi RS, Macho A, Muñoz E, Lieb K, Bringmann G, Clement HW, Hüll M, Fiebich BL (2004) 1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline-induced apoptosis in the human neuroblastoma cell line SK-N-SH. J Neurochem 91(2):263–273. https://doi.org/10.1111/j.1471-4159.2004.02710.x

    Article  PubMed  CAS  Google Scholar 

  70. Rausch WD, Abdel-mohsen M, Koutsilieri E, Chan WW, Bringmann G (1995) Studies of the potentially endogenous toxin TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline) in neuronal and glial cell cultures. J Neural Transm Suppl 46:255–263

    PubMed  CAS  Google Scholar 

  71. Janetzky B, God R, Bringmann G, Reichmann H (1995) 1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline, a new inhibitor of complex I. J Neural Transm Suppl 46:265–273

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the following grants: the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (#NRF-2017R1A2B1003346 and #NRF-2016R1A1A1A05005201), Republic of Korea, and the NRF grant funded by the Korea Government (MSIP) (2011-0018355), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoying Bing or Hyoung-Chun Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Electronic Supplementary Material

ESM 1

(DOCX 37 kb).

ESM 2

(PDF 3752 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Shin, EJ., Dang, DK. et al. Trichloroethylene and Parkinson’s Disease: Risk Assessment. Mol Neurobiol 55, 6201–6214 (2018). https://doi.org/10.1007/s12035-017-0830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0830-x

Keywords

Navigation