Skip to main content
Log in

Chronic REM Sleep Restriction in Juvenile Male Rats Induces Anxiety-Like Behavior and Alters Monoamine Systems in the Amygdala and Hippocampus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Adolescence is marked by major physiological changes, including those in the sleep-wake cycle, such as phase delay, which may result in reduced sleep hours. Sleep restriction and/or deprivation in adult rats activate stress response and seem to be a risk factor for triggering emotional disorders. In the present study, we sought to evaluate the behavioral and neurobiological consequences of prolonged REM sleep restriction in juvenile male rats. Immediately after weaning, on postnatal day 21, three males from each litter were submitted to REM sleep deprivation and the other three animals were maintained in their home-cages. REM sleep restriction (REMSR) was accomplished by placing the animals in the modified multiple platform method for 18 h and 6 h in the home-cage, where they could sleep freely; the sleep restriction lasted 21 consecutive days, during which all animals were measured and weighed every 3 days. After the end of this period, all animals were allowed to sleep freely for 2 days, and then the behavioral tests were performed for evaluation of depressive and anxiety-like profiles (sucrose negative contrast test and elevated plus maze, EPM). Blood sampling was performed 5 min before and 30 and 60 min after the EPM for determination of corticosterone plasma levels. The adrenals were weighed and brains collected and dissected for monoamine levels and receptor protein expression. REMSR impaired the physical development of adolescents, persisting for a further week. Animals submitted to REMSR exhibited higher basal corticosterone levels and a greater anxiety index in the EPM, characteristic of an anxious profile. These animals also exhibited higher noradrenaline levels in the amygdala and ventral hippocampus, without any change in the expression of β1-adrenergic receptors, as well as higher serotonin and reduced turnover in the dorsal hippocampus, with diminished expression of 5-HT1A. Finally, greater concentration of BDNF was observed in the dorsal hippocampus in chronically sleep-restricted animals. Chronic REMSR during puberty impaired physical development and induced anxiety-like behavior, attributed to increased noradrenaline and serotonin levels in the amygdala and hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dahl RE (2004) Adolescent brain development: a period of vulnerabilities and opportunities. Keynote address. Ann N Y Acad Sci 1021:1–22

    Article  PubMed  Google Scholar 

  2. Tarokh L, Carskadon MA, Achermann P (2011) Trait-like characteristics of the sleep EEG across adolescent development. J Neurosci 31:6371–6378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carskadon MA, Acebo C, Richardson GS, Tate BA, Seifer R (1997) An approach to studying circadian rhythms of adolescent humans. J Biol Rhythm 12:278–289

    Article  CAS  Google Scholar 

  4. Carskadon MA (2011) Sleep in adolescents: the perfect storm. Pediatr Clin N Am 58:637–647

    Article  Google Scholar 

  5. Loessl B, Valerius G, Kopasz M, Hornyak M, Riemann D, Voderholzer U (2008) Are adolescents chronically sleep-deprived? An investigation of sleep habits of adolescents in the Southwest of Germany. Child Care Health Dev 34:549–556

    Article  CAS  PubMed  Google Scholar 

  6. Mello L, Louzada F, Menna-Barreto L (2001) Effects of school schedule transition on sleep-wake cycle of Brazilian adolescents. sleep and hypinosis 3:106–111

    Google Scholar 

  7. Chen T, Wu Z, Shen Z, Zhang J, Shen X, Li S (2014) Sleep duration in Chinese adolescents: biological, environmental, and behavioral predictors. Sleep Med 15:1345–1353

    Article  PubMed  Google Scholar 

  8. Merdad RA, Merdad LA, Nassif RA, El-Derwi D, Wali SO (2014) Sleep habits in adolescents of Saudi Arabia; distinct patterns and extreme sleep schedules. Sleep Med 15:1370–1378

    Article  PubMed  Google Scholar 

  9. Hysing M, Pallesen S, Stormark KM, Lundervold AJ, Sivertsen B (2013) Sleep patterns and insomnia among adolescents: a population-based study. J Sleep Res 22:549–556

    Article  PubMed  Google Scholar 

  10. Meijer AM, Reitz E, Dekovic M, van den Wittenboer GL, Stoel RD (2010) Longitudinal relations between sleep quality, time in bed and adolescent problem behaviour. J Child Psychol Psychiatry 51:1278–1286

    Article  PubMed  Google Scholar 

  11. Short MA, Louca M (2015) Sleep deprivation leads to mood deficits in healthy adolescents. Sleep Med 16:987–993

    Article  PubMed  Google Scholar 

  12. Gregory AM, Caspi A, Eley TC, Moffitt TE, Oconnor TG, Poulton R (2005) Prospective longitudinal associations between persistent sleep problems in childhood and anxiety and depression disorders in adulthood. J Abnorm Child Psychol 33:157–163

    Article  PubMed  Google Scholar 

  13. Baum KT, Desai A, Field J, Miller LE, Rausch J, Beebe DW (2014) Sleep restriction worsens mood and emotion regulation in adolescents. J Child Psychol Psychiatry 55:180–190

    Article  PubMed  Google Scholar 

  14. Blank M, Zhang J, Lamers F, Taylor AD, Hickie IB, Merikangas KR (2015) Health correlates of insomnia symptoms and comorbid mental disorders in a nationally representative sample of US adolescents. Sleep 38:197–204

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mellman TA, Pigeon WR, Nowell PD, Nolan B (2007) Relationships between REM sleep findings and PTSD symptoms during the early aftermath of trauma. J Trauma Stress 20:893–901

    Article  PubMed  Google Scholar 

  16. Seifritz E (2001) Contribution of sleep physiology to depressive pathophysiology. Neuropsychopharmacology 25:S85–S88

    Article  CAS  PubMed  Google Scholar 

  17. Papadimitriou GN, Kerkhofs M, Kempenaers C, Mendlewicz J (1988) EEG sleep studies in patients with generalized anxiety disorder. Psychiatry Res 26:183–190

    Article  CAS  PubMed  Google Scholar 

  18. McNamara P, Auerbach S, Johnson P, Harris E, Doros G (2010) Impact of REM sleep on distortions of self-concept, mood and memory in depressed/anxious participants. J Affect Disord 122:198–207

    Article  PubMed  Google Scholar 

  19. Guzman-Marin R, Suntsova N, Stewart DR, Gong H, Szymusiak R, McGinty D (2003) Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats. J Physiol 549:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Novati A, Hulshof HJ, Koolhaas JM, Lucassen PJ, Meerlo P (2011) Chronic sleep restriction causes a decrease in hippocampal volume in adolescent rats, which is not explained by changes in glucocorticoid levels or neurogenesis. Neuroscience 190:145–155

    Article  CAS  PubMed  Google Scholar 

  21. Motomura Y, Kitamura S, Oba K, Terasawa Y, Enomoto M, Katayose Y et al (2013) Sleep debt elicits negative emotional reaction through diminished amygdala-anterior cingulate functional connectivity. PLoS One 8:e56578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Asikainen M, Toppila J, Alanko L, Ward DJ, Stenberg D, Porkka-Heiskanen T (1997) Sleep deprivation increases brain serotonin turnover in the rat. Neuroreport 8:1577–1582

    Article  CAS  PubMed  Google Scholar 

  23. Novati A, Roman V, Cetin T, Hagewoud R, den Boer JA, Luiten PG et al (2008) Chronically restricted sleep leads to depression-like changes in neurotransmitter receptor sensitivity and neuroendocrine stress reactivity in rats. Sleep 31:1579–1585

    Article  PubMed  PubMed Central  Google Scholar 

  24. Roman V, Walstra I, Luiten PG, Meerlo P (2005) Too little sleep gradually desensitizes the serotonin 1A receptor system. Sleep 28:1505–1510

    PubMed  Google Scholar 

  25. Porkka-Heiskanen T, Smith SE, Taira T, Urban JH, Levine JE, Turek FW et al (1995) Noradrenergic activity in rat brain during rapid eye movement sleep deprivation and rebound sleep. Am J Phys 268:R1456–R1463

    CAS  Google Scholar 

  26. Hipólide DC, Tufik S, Raymond R, Nobrega JN (1998) Heterogeneous effects of rapid eye movement sleep deprivation on binding to alpha- and beta-adrenergic receptor subtypes in rat brain. Neuroscience 86:977–987

    Article  PubMed  Google Scholar 

  27. Mogilnicka E, Przewłocka B, Van Luijtelaar EL, Klimek V, Coenen AM (1986) Effects of REM sleep deprivation on central alpha 1- and beta-adrenoceptors in rat brain. Pharmacol Biochem Behav 25:329–332

    Article  CAS  PubMed  Google Scholar 

  28. Charifi C, Paut-Pagano L, Debilly G, Cespuglio R, Jouvet M, Valatx JL (2000) Effect of noradrenergic denervation of the amygdala upon recovery after sleep deprivation in the rat. Neurosci Lett 287:41–44

    Article  CAS  PubMed  Google Scholar 

  29. Charifi C, Debilly G, Paut-Pagano L, Cespuglio R, Valatx JL (2001) Effect of noradrenergic denervation of medial prefrontal cortex and dentate gyrus on recovery after sleep deprivation in the rat. Neurosci Lett 311:113–116

    Article  CAS  PubMed  Google Scholar 

  30. Mirescu C, Peters JD, Noiman L, Gould E (2006) Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Proc Natl Acad Sci U S A 103:19170–19175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hipólide DC, Suchecki D, de Pimentel Carvalho Pinto A, Chiconelli Faria E, Tufik S, Luz J (2006) Paradoxical sleep deprivation and sleep recovery: effects on the hypothalamic-pituitary-adrenal axis activity, energy balance and body composition of rats. J Neuroendocrinol 18:231–238

    Article  PubMed  Google Scholar 

  32. Galvão MO, Sinigaglia-Coimbra R, Kawakami SE, Tufik S, Suchecki D (2009) Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake and stress response. Psychoneuroendocrinology 34:1176–1183

    Article  Google Scholar 

  33. Leproult R, Copinschi G, Buxton O, Van Cauter E (1997) Sleep loss results in an elevation of cortisol levels the next evening. Sleep 20:865–870

    CAS  PubMed  Google Scholar 

  34. Spiegel K, Leproult R, L'hermite-Balériaux M, Copinschi G, Penev PD, Van Cauter E (2004) Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 89:5762–5771

    Article  CAS  PubMed  Google Scholar 

  35. Martins PJ, Marques MS, Tufik S, D'Almeida V (2010) Orexin activation precedes increased NPY expression, hyperphagia, and metabolic changes in response to sleep deprivation. Am J Physiol Endocrinol Metab 298:E726–E734

    Article  CAS  PubMed  Google Scholar 

  36. Meijer OC, de Kloet ER (1998) Corticosterone and serotonergic neurotransmission in the hippocampus: Functional implications of central corticosteroid receptor diversity. Crit Rev Neurobiol 12:1–20

    Article  CAS  PubMed  Google Scholar 

  37. Fan Y, Chen P, Li Y, Cui K, Noel DM, Cummins ED et al (2014) Corticosterone administration up-regulated expression of norepinephrine transporter and dopamine β-hydroxylase in rat locus coeruleus and its terminal regions. J Neurochem 128:445–458

    Article  CAS  PubMed  Google Scholar 

  38. Barde YA (1994) Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res 390:45–56

    CAS  PubMed  Google Scholar 

  39. Guzman-Marin R, Ying Z, Suntsova N, Methippara M, Bashir T, Szymusiak R et al (2006) Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 575:807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barbosa Neto JB, Tiba PA, Faturi CB, de Castro-Neto EF, da Graça N-MM, de Jesus MJ et al (2012) Stress during development alters anxiety-like behavior and hippocampal neurotransmission in male and female rats. Neuropharmacology 62:518–526

    Article  CAS  PubMed  Google Scholar 

  41. Suchecki D, Tufik S (2000) Social stability attenuates the stress in the modified multiple platform method for paradoxical sleep deprivation in the rat. Physiol Behav 68:309–316

    Article  CAS  PubMed  Google Scholar 

  42. Cohen HB, Dement WC (1965) Sleep: changes in threshold to electroconvulsive shock in rats after deprivation of "paradoxical" phase. Science 150:1318–1319

    Article  CAS  PubMed  Google Scholar 

  43. Suchecki D, Lobo LL, Hipolide DC, Tufik S (1998) Increased ACTH and corticosterone secretion induced by different methods of paradoxical sleep deprivation. J Sleep Res 7:276–281

    Article  CAS  PubMed  Google Scholar 

  44. Machado RB, Hipolide DC, Benedito-Silva AA, Tufik S (2004) Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Res 1004:45–51

    Article  CAS  PubMed  Google Scholar 

  45. Machado RB, Suchecki D, Tufik S (2005) Sleep homeostasis in rats assessed by a long-term intermittent paradoxical sleep deprivation protocol. Behav Brain Res 160:356–364

    Article  PubMed  Google Scholar 

  46. Campbell SS, Tobler I (1984) Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev 8:269–300

    Article  CAS  PubMed  Google Scholar 

  47. Van Twyver H (1969) Sleep patterns in five rodent species. Physiol Behav 4:5

    Article  Google Scholar 

  48. Matthews K, Wilkinson LS, Robbins TW (1996) Repeated maternal separation of preweanling rats attenuates behavioral responses to primary and conditioned incentives in adulthood. Physiol Behav 59:99–107

    Article  CAS  PubMed  Google Scholar 

  49. Verma P, Hellemans KG, Choi FY, Yu W, Weinberg J (2010) Circadian phase and sex effects on depressive/anxiety-like behaviors and HPA axis responses to acute stress. Physiol Behav 99:276–285

    Article  CAS  PubMed  Google Scholar 

  50. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  51. Mazor A, Matar MA, Kaplan Z, Kozlovsky N, Zohar J, Cohen H (2009) Gender-related qualitative differences in baseline and post-stress anxiety responses are not reflected in the incidence of criterion-based PTSD-like behaviour patterns. World J Biol Psychiatry 10:856–869

    Article  PubMed  Google Scholar 

  52. Machado RB, Tufik S, Suchecki D (2008) Chronic stress during paradoxical sleep deprivation increases paradoxical sleep rebound: association with prolactin plasma levels and brain serotonin content. Psychoneuroendocrinology 33:1211–1224

    Article  CAS  PubMed  Google Scholar 

  53. Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gilda JE, Gomes AV (2013) Stain-free total protein staining is a superior loading control to β-actin for Western blots. Anal Biochem 440:186–188

    Article  CAS  PubMed  Google Scholar 

  55. Eaton SL, Roche SL, Llavero Hurtado M, Oldknow KJ, Farquharson C, Gillingwater TH et al (2013) Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS One 8:e72457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koban M, Swinson KL (2005) Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue. Am J Physiol Endocrinol Metab 289:E68–E74

    Article  CAS  PubMed  Google Scholar 

  57. Bergmann BM, Everson CA, Kushida CA, Fang VS, Leitch CA, Schoeller DA et al (1989) Sleep deprivation in the rat: V. Energy use and mediation. Sleep 12:31–41

    Article  CAS  PubMed  Google Scholar 

  58. Barf RP, Van Dijk G, Scheurink AJ, Hoffmann K, Novati A, Hulshof HJ et al (2012) Metabolic consequences of chronic sleep restriction in rats: changes in body weight regulation and energy expenditure. Physiol Behav 107:322–328

    Article  CAS  PubMed  Google Scholar 

  59. Everson CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat: III. Total sleep deprivation. Sleep 12:13–21

    Article  CAS  PubMed  Google Scholar 

  60. Koban M, Sita LV, Le WW, Hoffman GE (2008) Sleep deprivation of rats: the hyperphagic response is real. Sleep 31:927–933

    PubMed  PubMed Central  Google Scholar 

  61. Moraes DA, Venancio DP, Suchecki D (2014) Sleep deprivation alters energy homeostasis through non-compensatory alterations in hypothalamic insulin receptors in Wistar rats. Horm Behav 66:705–712

    Article  CAS  PubMed  Google Scholar 

  62. Venancio DP, Suchecki D (2015) Prolonged REM sleep restriction induces metabolic syndrome-related changes: mediation by pro-inflammatory cytokines. Brain Behav Immun 47:109–117

    Article  CAS  PubMed  Google Scholar 

  63. Ribeiro-Silva N, Nejm MB, da Silva SM, Suchecki D, Luz J (2016) Restriction of rapid eye movement sleep during adolescence increases energy gain and metabolic efficiency in young adult rats. Exp Physiol 101:308–318

  64. Suchecki D, Tufik S (2011) Comparison of REM sleep deprivation methods: role of stress and validity of use. In: Mallick BN, Pandi-Perumal SR, McCarley WR, Morisson AR (eds) Rapid eye movement sleep: regulation and function. Academic Press, Cambridge, pp. 368–382

    Chapter  Google Scholar 

  65. Meerlo P, Sgoifo A, Suchecki D (2008) Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev 12:197–210

    Article  PubMed  Google Scholar 

  66. Everson CA, Smith CB, Sokoloff L (1994) Effects of prolonged sleep deprivation on local rates of cerebral energy metabolism in freely moving rats. J Neurosci 14:6769–6778

    CAS  PubMed  Google Scholar 

  67. Palma BD, Nobrega JN, Gomes VL, Esumi LA, Seabra ML, Tufik S et al (2009) Prostaglandin involvement in hyperthermia induced by sleep deprivation: a pharmacological and autoradiographic study. Life Sci 84:278–281

  68. Seabra ML, Tufik S (1993) Sodium diclofenac inhibits hyperthermia induced by paradoxical sleep deprivation: the possible participation of prostaglandins. Physiol Behav 54:923–926

  69. Suchecki D, Antunes J, Tufik S (2003) Palatable solutions during paradoxical sleep deprivation: reduction of hypothalamic-pituitary-adrenal axis activity and lack of effect on energy imbalance. J Neuroendocrinol 15:815–821

  70. de Kloet ER, Molendijk ML (2016) Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plast 2016:6503162

  71. Brenes JC, Fornaguera J (2009) The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum. Behav Brain Res 198:199–205

  72. Kuramochi M, Nakamura S (2009) Effects of postnatal isolation rearing and antidepressant treatment on the density of serotonergic and noradrenergic axons and depressive behavior in rats. Neuroscience 163:448–455

  73. Muchimapura S, Fulford AJ, Mason R, Marsden CA (2002) Isolation rearing in the rat disrupts the hippocampal response to stress. Neuroscience 112:697–705

  74. Maudhuit C, Jolas T, Chastanet M, Hamon M, Adrien J (1996) Reduced inhibitory potency of serotonin reuptake blockers on central serotoninergic neurons in rats selectively deprived of rapid eye movement sleep. Biol Psychiatry 40:1000–1007

  75. Prévot E, Maudhuit C, Le Poul E, Hamon M, Adrien J (1996) Sleep deprivation reduces the citalopram-induced inhibition of serotoninergic neuronal firing in the nucleus raphe dorsalis of the rat. J Sleep Res 5:238–245

  76. Roman V, Hagewoud R, Luiten PG, Meerlo P (2006) Differential effects of chronic partial sleep deprivation and stress on serotonin-1A and muscarinic acetylcholine receptor sensitivity. J Sleep Res 15:386–394

  77. Peñalva RG, Lancel M, Flachskamm C, Reul JM, Holsboer F, Linthorst AC (2003) Effect of sleep and sleep deprivation on serotonergic neurotransmission in the hippocampus: a combined in vivo microdialysis/EEG study in rats. Eur J Neurosci 17:1896–1906

  78. Subhash MN, Srinivas BN, Vinod KY, Jagadeesh S (2000) Modulation of 5-HT1A receptor mediated response by fluoxetine in rat brain. J Neural Transm (Vienna) 107:377–387

  79. Keck ME, Sartori SB, Welt T, Müller MB, Ohl F, Holsboer F et al (2005) Differences in serotonergic neurotransmission between rats displaying high or low anxiety/depression-like behaviour: effects of chronic paroxetine treatment. J Neurochem 92:1170–1179

  80. Saré RM, Levine M, Hildreth C, Picchioni D, Smith CB (2016) Chronic sleep restriction during development can lead to long-lasting behavioral effects. Physiol Behav 155:208–217

  81. Xu A, Sakurai E, Kuramasu A, Zhang J, Li J, Okamura N, et al (2010) Roles of hypothalamic subgroup histamine and orexin neurons on behavioral responses to sleep deprivation induced by the treadmill method in adolescent rats. J Pharmacol Sci 114:444–453

  82. Tanaka M, Yoshida M, Emoto H, Ishii H (2000) Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol 405:397–406

  83. Rudoy CA, Van Bockstaele EJ (2007) Betaxolol, a selective beta(1)-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats. Prog Neuropsychopharmacol Biol Psychiatry 31:1119–1129

  84. Rudoy CA, Reyes AR, Van Bockstaele EJ (2009) Evidence for beta1-adrenergic receptor involvement in amygdalar corticotropin-releasing factor gene expression: Implications for cocaine withdrawal. Neuropsychopharmacology 34:1135–1148

  85. Fu A, Li X, Zhao B (2008) Role of beta1-adrenoceptor in the basolateral amygdala of rats with anxiety-like behavior. Brain Res 1211:85–92

  86. Suchecki D, Tiba PA, Tufik S (2002) Hormonal and behavioural responses of paradoxical sleep-deprived rats to the elevated plus maze. J Neuroendocrinol 14:549–554

  87. Carvalho MC, Albrechet-Souza L, Masson S, Brandão ML (2005) Changes in the biogenic amine content of the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens of rats submitted to single and repeated sessions of the elevated plus-maze test. Braz J Med Biol Res 38:1857–1866

  88. Cirelli C, Tononi G (2000) Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci 20:9187–9194

  89. Hairston IS, Peyron C, Denning DP, Ruby NF, Flores J, Sapolsky RM et al (2004) Sleep deprivation effects on growth factor expression in neonatal rats: a potential role for BDNF in the mediation of delta power. J Neurophysiol 91:1586–1595

  90. Duncan WC, Sarasso S, Ferrarelli F, Selter J, Riedner BA, Hejazi NS et al (2013) Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol 16:301–311

  91. Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C (2008) A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 28:4088–4095

  92. Musumeci G, Castrogiovanni P, Castorina S, Imbesi R, Szychlinska MA, Scuderi S et al (2015) Changes in serotonin (5-HT) and brain-derived neurotrophic factor (BDFN) expression in frontal cortex and hippocampus of aged rat treated with high tryptophan diet. Brain Res Bull 119:12–18

  93. Pudell C, Vicente BA, Delattre AM, Carabelli B, Mori MA, Suchecki D et al (2014) Fish oil improves anxiety-like, depressive-like and cognitive behaviors in olfactory bulbectomised rats. Eur J Neurosci 39:266–274

  94.  Goldman L, Winget C, Hollingshead GW, Levine S (1973) Postweaning development of negative feedback in the pituitary-adrenal system of the rat. Neuroendocrinology 12:199–211

  95. Gomez F, Manalo S, Dallman MF (2004) Androgen-sensitive changes in regulation of restraint-induced adrenocorticotropin secretion between early and late puberty in male rats. Endocrinology 145:59–70

  96.  Romeo RD, Lee SJ, Chhua N, McPherson CR, McEwen BS (2004) Testosterone cannot activate an adult-like stress response in prepubertal male rats. Neuroendocrinology 79:125–132

  97. Vázquez DM, Akil H (1993) Pituitary-adrenal response to ether vapor in the weanling animal: characterization of the inhibitory effect of glucocorticoids on adrenocorticotropin secretion. Pediatr Res 34:646–653

  98. Gomez F, Houshyar H, Dallman MF (2002) Marked regulatory shifts in gonadal, adrenal, and metabolic system responses to repeated restraint stress occur within a 3-week period in pubertal male rats. Endocrinology 143:2852–2862

  99. Voderholzer U, Piosczyk H, Holz J, Feige B, Loessl B, Kopasz M et al (2012) The impact of increasing sleep restriction on cortisol and daytime sleepiness in adolescents. Neurosci Lett 507:161–166

  100. Omisade A, Buxton OM, Rusak B (2010) Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiol Behav 99:651–656

Download references

Acknowledgements

The authors would like to express their gratitude to Marcus Vinícius Bunscheit for technical assistance in this study. Financial support was provided by Associação Fundo de Incentivo à Pesquisa (AFIP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). Janaína da Silva Rocha-Lopes is the recipient of a Ph.D. fellowship from CAPES. Deborah Suchecki is the recipient of a Research Fellowship from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Suchecki.

Ethics declarations

All procedures were approved by the Ethics Committee of Universidade Federal de São Paulo/Escola Paulista de Medicina (protocol no. 2013/11), according to the Brazilian laws for the use of animals in research.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Rocha-Lopes, J., Machado, R.B. & Suchecki, D. Chronic REM Sleep Restriction in Juvenile Male Rats Induces Anxiety-Like Behavior and Alters Monoamine Systems in the Amygdala and Hippocampus. Mol Neurobiol 55, 2884–2896 (2018). https://doi.org/10.1007/s12035-017-0541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0541-3

Keywords

Navigation