Skip to main content

Advertisement

Log in

Ketamine Inhibits ATP-Evoked Exocytotic Release of Brain-Derived Neurotrophic Factor from Vesicles in Cultured Rat Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the brain, astrocytes signal to neighboring cells via regulated exocytotic release of gliosignaling molecules, such as brain-derived neurotrophic factor (BDNF). Recent studies uncovered a role of ketamine, an anesthetic and antidepressant, in the regulation of BDNF expression and in the disruption of astrocytic Ca2+ signaling, but it is unclear whether it affects astroglial BDNF release. We investigated whether ketamine affects ATP-evoked Ca2+ signaling and exocytotic release of BDNF at the single-vesicle level in cultured rat astrocytes. Cells were transfected with a plasmid encoding preproBDNF tagged with the pH-sensitive fluorescent protein superecliptic pHluorin, (BDNF-pHse) to load vesicles and measure the release of BDNF-pHse when the exocytotic fusion pore opens and alkalinizes the luminal pH. In addition, cell-attached membrane capacitance changes were recorded to monitor unitary vesicle interaction with the plasma membrane. Intracellular Ca2+ activity was monitored with Fluo-4 and confocal microscopy, which was also used to immunocytochemically characterize BDNF-pHse-laden vesicles. As revealed by double-fluorescent micrographs, BDNF-pHse localized to vesicles positive for the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins, vesicle-associated membrane protein 2 (VAMP2), VAMP3, and synaptotagmin IV. Ketamine treatment decreased the number of ATP-evoked BDNF-pHse fusion/secretion events (P < 0.05), the frequency of ATP-evoked transient (P < 0.001) and full-fusion exocytotic (P < 0.05) events, along with a reduction in the ATP-evoked increase in intracellular Ca2+ activity in astrocytes by ~70 % (P < 0.001). The results show that ketamine treatment suppresses ATP-triggered vesicle fusion and BDNF secretion by increasing the probability of a narrow fusion pore open state and/or by reducing astrocytic Ca2+ excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lessmann V, Brigadski T (2009) Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neurosci Res 65:11–22. doi:10.1016/j.neures.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  2. Allaman I, Fiumelli H, Magistretti PJ, Martin JL (2011) Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacol (Berl) 216:75–84. doi:10.1007/s00213-011-2190-y

    Article  CAS  Google Scholar 

  3. Moretto G, Xu RY, Walker DG, Kim SU (1994) Co-expression of mRNA for neurotrophic factors in human neurons and glial cells in culture. J Neuropathol Exp Neurol 53:78–85

    Article  CAS  PubMed  Google Scholar 

  4. Toyomoto M, Inoue S, Ohta K, Kuno S, Ohta M, Hayashi K, Ikeda K (2005) Production of NGF, BDNF and GDNF in mouse astrocyte cultures is strongly enhanced by a cerebral vasodilator, ifenprodil. Neurosci Lett 379:185–189. doi:10.1016/j.neulet.2004.12.063

    Article  CAS  PubMed  Google Scholar 

  5. Wu H, Friedman WJ, Dreyfus CF (2004) Differential regulation of neurotrophin expression in basal forebrain astrocytes by neuronal signals. J Neurosci Res 76:76–85. doi:10.1002/jnr.20060

    Article  CAS  PubMed  Google Scholar 

  6. Zafra F, Lindholm D, Castrén E, Hartikka J, Thoenen H (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci 12:4793–4799

    CAS  PubMed  Google Scholar 

  7. Jean YY, Lercher LD, Dreyfus CF (2008) Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol 4:35–42. doi:10.1017/S1740925X09000052

    Article  PubMed  Google Scholar 

  8. Rudge JS, Pasnikowski EM, Holst P, Lindsay RM (1995) Changes in neurotrophic factor expression and receptor activation following exposure of hippocampal neuron/astrocyte cocultures to kainic acid. J Neurosci 15:6856–6867

    CAS  PubMed  Google Scholar 

  9. Inoue S, Susukida M, Ikeda K, Murase K, Hayashi K (1997) Dopaminergic transmitter up-regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) synthesis in mouse astrocytes in culture. Biochem Biophys Res Commun 238:468–472. doi:10.1006/bbrc.1997.7324

    Article  CAS  PubMed  Google Scholar 

  10. Fulmer CG, VonDran MW, Stillman AA, Huang Y, Hempstead BL, Dreyfus CF (2014) Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J Neurosci 34:8186–8196. doi:10.1523/JNEUROSCI.4267-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giralt A, Friedman HC, Caneda-Ferrón B, Urbán N, Moreno E, Rubio N, Blanco J, Peterson A et al (2010) BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease. Gene Ther 17:1294–1308. doi:10.1038/gt.2010.71

    Article  CAS  PubMed  Google Scholar 

  12. Quesseveur G, David DJ, Gaillard MC, Pla P, Wu MV, Nguyen HT, Nicolas V, Auregan G et al (2013) BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry 3, e253. doi:10.1038/tp.2013.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prickaerts J, De Vry J, Boere J, Kenis G, Quinton MS, Engel S, Melnick L, Schreiber R (2012) Differential BDNF responses of triple versus dual reuptake inhibition in neuronal and astrocytoma cells as well as in rat hippocampus and prefrontal cortex. J Mol Neurosci 48:167–175. doi:10.1007/s12031-012-9802-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ubhi K, Inglis C, Mante M, Patrick C, Adame A, Spencer B, Rockenstein E, May V et al (2012) Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of alpha-synucleinopathy. Exp Neurol 234:405–416. doi:10.1016/j.expneurol.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95. doi:10.1038/nature10130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Serafini G, Howland RH, Rovedi F, Girardi P, Amore M (2014) The role of ketamine in treatment-resistant depression: a systematic review. Curr Neuropharmacol 12:444–461. doi:10.2174/1570159X12666140619204251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akinfiresoye L, Tizabi Y (2013) Antidepressant effects of AMPA and ketamine combination: role of hippocampal BDNF, synapsin, and mTOR. Psychopharmacol (Berl) 230:291–298. doi:10.1007/s00213-013-3153-2

    Article  CAS  Google Scholar 

  18. Fraga DB, Réus GZ, Abelaira HM, De Luca RD, Canever L, Pfaffenseller B, Colpo GD, Kapczinski F et al (2013) Ketamine alters behavior and decreases BDNF levels in the rat brain as a function of time after drug administration. Rev Bras Psiquiatr 35:262–266. doi:10.1590/1516-4446-2012-0858

    Article  PubMed  Google Scholar 

  19. Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET (2013) Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci 33:6990–7002. doi:10.1523/JNEUROSCI.4998-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK (2012) Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry 71:996–1005. doi:10.1016/j.biopsych.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  21. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  CAS  PubMed  Google Scholar 

  22. Müller HK, Wegener G, Liebenberg N, Zarate CA, Popoli M, Elfving B (2013) Ketamine regulates the presynaptic release machinery in the hippocampus. J Psychiatr Res 47:892–899. doi:10.1016/j.jpsychires.2013.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wesseling H, Rahmoune H, Tricklebank M, Guest PC, Bahn S (2015) A targeted multiplexed proteomic investigation identifies ketamine-induced changes in immune markers in rat serum and expression changes in protein kinases/phosphatases in rat brain. J Proteome Res 14:411–421. doi:10.1021/pr5009493

    Article  CAS  PubMed  Google Scholar 

  24. Denovan-Wright EM, Newton RA, Armstrong JN, Babity JM, Robertson HA (1998) Acute administration of cocaine, but not amphetamine, increases the level of synaptotagmin IV mRNA in the dorsal striatum of rat. Brain Res Mol Brain Res 55:350–354

    Article  CAS  PubMed  Google Scholar 

  25. Peng W, Premkumar A, Mossner R, Fukuda M, Lesch KP, Simantov R (2002) Synaptotagmin I and IV are differentially regulated in the brain by the recreational drug 3,4-methylenedioxymethamphetamine (MDMA). Brain Res Mol Brain Res 108:94–101

    Article  CAS  PubMed  Google Scholar 

  26. Dean C, Liu H, Dunning FM, Chang PY, Jackson MB, Chapman ER (2009) Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nat Neurosci 12:767–776. doi:10.1038/nn.2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stenovec M, Trkov S, Kreft M, Zorec R (2014) Alterations of calcium homoeostasis in cultured rat astrocytes evoked by bioactive sphingolipids. Acta Physiol (Oxf) 212:49–61. doi:10.1111/apha.12314

    Article  CAS  Google Scholar 

  28. Yang H, Liang G, Hawkins BJ, Madesh M, Pierwola A, Wei H (2008) Inhalational anesthetics induce cell damage by disruption of intracellular calcium homeostasis with different potencies. Anesthesiology 109:243–250. doi:10.1097/ALN.0b013e31817f5c47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thrane AS, Rangroo Thrane V, Zeppenfeld D, Lou N, Xu Q, Nagelhus EA, Nedergaard M (2012) General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proc Natl Acad Sci U S A 109:18974–18979. doi:10.1073/pnas.1209448109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bergami M, Santi S, Formaggio E, Cagnoli C, Verderio C, Blum R, Berninger B, Matteoli M et al (2008) Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 183:213–221. doi:10.1083/jcb.200806137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195. doi:10.1038/28190

    Article  PubMed  Google Scholar 

  32. Schwartz JP, Wilson DJ (1992) Preparation and characterization of type 1 astrocytes cultured from adult rat cortex, cerebellum, and striatum. Glia 5:75–80. doi:10.1002/glia.440050111

    Article  CAS  PubMed  Google Scholar 

  33. Jorgacevski J, Stenovec M, Kreft M, Bajic A, Rituper B, Vardjan N, Stojilkovic S, Zorec R (2008) Hypotonicity and peptide discharge from a single vesicle. Am J physiol Cell physiol 295:C624–631. doi:10.1152/ajpcell.00303.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101:9441–9446. doi:10.1073/pnas.0401960101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hepp R, Perraut M, Chasserot-Golaz S, Galli T, Aunis D, Langley K, Grant NJ (1999) Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia 27:181–187

    Article  CAS  PubMed  Google Scholar 

  36. Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377:489–492. doi:10.1016/0014-5793(95)01401-2

    Article  CAS  PubMed  Google Scholar 

  37. Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79:314–320. doi:10.1016/S0006-3495(00)76293-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61(2):296–434

    CAS  PubMed  Google Scholar 

  39. Vardjan N, Stenovec M, Jorgacevski J, Kreft M, Zorec R (2007) Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J Neurosci 27:4737–4746. doi:10.1523/JNEUROSCI.0351-07.2007

    Article  CAS  PubMed  Google Scholar 

  40. Mowla SJ, Farhadi HF, Pareek S, Atwal JK, Morris SJ, Seidah NG, Murphy RA (2001) Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem 276:12660–12666. doi:10.1074/jbc.M008104200

    Article  CAS  PubMed  Google Scholar 

  41. Pangrsic T, Potokar M, Haydon PG, Zorec R, Kreft M (2006) Astrocyte swelling leads to membrane unfolding, not membrane insertion. J Neurochem 99:514–523. doi:10.1111/j.1471-4159.2006.04042.x

    Article  CAS  PubMed  Google Scholar 

  42. Stenovec M, Trkov S, Kreft M, Zorec R (2014) Alterations of calcium homeostasis in cultured rat astrocytes evoked by bioactive sphingolipids. Acta Physiol (Oxf). doi:10.1111/apha.12314

    Google Scholar 

  43. Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79:6712–6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rituper B, Guček A, Jorgačevski J, Flašker A, Kreft M, Zorec R (2013) High-resolution membrane capacitance measurements for the study of exocytosis and endocytosis. Nat Protoc 8:1169–1183. doi:10.1038/nprot.2013.069

    Article  CAS  PubMed  Google Scholar 

  45. Czeh B, Di Benedetto B (2013) Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 23:171–185. doi:10.1016/j.euroneuro.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  46. Gucek A, Vardjan N, Zorec R (2012) Exocytosis in astrocytes: transmitter release and membrane signal regulation. Neurochem Res 37:2351–2363. doi:10.1007/s11064-012-0773-6

    Article  CAS  PubMed  Google Scholar 

  47. Krzan M, Stenovec M, Kreft M, Pangrsic T, Grilc S, Haydon PG, Zorec R (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23:1580–1583

    CAS  PubMed  Google Scholar 

  48. Malarkey EB, Parpura V (2011) Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol 589:4271–4300. doi:10.1113/jphysiol.2011.210435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramamoorthy P, Whim MD (2008) Trafficking and fusion of neuropeptide Y-containing dense-core granules in astrocytes. J Neurosci 28:13815–13827. doi:10.1523/JNEUROSCI.5361-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN neuro 4 (2). 10.1042/AN20110061

  51. Haubensak W, Narz F, Heumann R, Lessmann V (1998) BDNF-GFP containing secretory granules are localized in the vicinity of synaptic junctions of cultured cortical neurons. J Cell Sci 111:1483–1493

    CAS  PubMed  Google Scholar 

  52. Wang CT, Grishanin R, Earles CA, Chang PY, Martin TF, Chapman ER, Jackson MB (2001) Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294:1111–1115. doi:10.1126/science.1064002

    Article  CAS  PubMed  Google Scholar 

  53. Wang CT, Lu JC, Bai J, Chang PY, Martin TF, Chapman ER, Jackson MB (2003) Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424:943–947. doi:10.1038/nature01857

    Article  CAS  PubMed  Google Scholar 

  54. Pawlu C, DiAntonio A, Heckmann M (2004) Postfusional control of quantal current shape. Neuron 42:607–618

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Z, Jackson MB (2010) Synaptotagmin IV modulation of vesicle size and fusion pores in PC12 cells. Biophys J 98:968–978. doi:10.1016/j.bpj.2009.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shinoda Y, Sadakata T, Nakao K, Katoh-Semba R, Kinameri E, Furuya A, Yanagawa Y, Hirase H et al (2011) Calcium-dependent activator protein for secretion 2 (CAPS2) promotes BDNF secretion and is critical for the development of GABAergic interneuron network. Proc Natl Acad Sci U S A 108:373–378. doi:10.1073/pnas.1012220108

    Article  CAS  PubMed  Google Scholar 

  57. Stenovec M, Kreft M, Poberaj I, Betz WJ, Zorec R (2004) Slow spontaneous secretion from single large dense-core vesicles monitored in neuroendocrine cells. FASEB J 18:1270–1272. doi:10.1096/fj.03-1397fje

    CAS  PubMed  Google Scholar 

  58. Kojima M, Takei N, Numakawa T, Ishikawa Y, Suzuki S, Matsumoto T, Katoh-Semba R, Nawa H et al (2001) Biological characterization and optical imaging of brain-derived neurotrophic factor-green fluorescent protein suggest an activity-dependent local release of brain-derived neurotrophic factor in neurites of cultured hippocampal neurons. J Neurosci Res 64:1–10

    Article  CAS  PubMed  Google Scholar 

  59. Trkov S, Stenovec M, Kreft M, Potokar M, Parpura V, Davletov B, Zorec R (2012) Fingolimod—a sphingosine-like molecule inhibits vesicle mobility and secretion in astrocytes. Glia 60:1406–1416. doi:10.1002/glia.22361

    Article  PubMed  PubMed Central  Google Scholar 

  60. Perrais D, Kleppe IC, Taraska JW, Almers W (2004) Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells. J Physiol 560:413–428. doi:10.1113/jphysiol.2004.064410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A 100:2070–2075. doi:10.1073/pnas.0337526100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Flašker A, Jorgačevski J, Calejo AI, Kreft M, Zorec R (2013) Vesicle size determines unitary exocytic properties and their sensitivity to sphingosine. Mol Cell Endocrinol 376:136–147. doi:10.1016/j.mce.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  63. Rupnik M, Kreft M, Sikdar SK, Grilc S, Romih R, Zupancic G, Martin TF, Zorec R (2000) Rapid regulated dense-core vesicle exocytosis requires the CAPS protein. Proc Natl Acad Sci U S A 97:5627–5632. doi:10.1073/pnas.090359097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Han W, Ng YK, Axelrod D, Levitan ES (1999) Neuropeptide release by efficient recruitment of diffusing cytoplasmic secretory vesicles. Proc Natl Acad Sci U S A 96:14577–14582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brigadski T, Hartmann M, Lessmann V (2005) Differential vesicular targeting and time course of synaptic secretion of the mammalian neurotrophins. J Neurosci 25:7601–7614. doi:10.1523/JNEUROSCI.1776-05.2005

    Article  CAS  PubMed  Google Scholar 

  66. Stenovec M, Solmajer T, Perdih A, Vardjan N, Kreft M, Zorec R (2007) Distinct labelling of fusion events in rat lactotrophs by FM 1–43 and FM 4–64 is associated with conformational differences. Acta Physiol (Oxf) 191:35–42. doi:10.1111/j.1748-1716.2007.01716.x

    Article  CAS  Google Scholar 

  67. Bandmann V, Kreft M, Homann U (2011) Modes of exocytotic and endocytotic events in tobacco BY-2 protoplasts. Mol Plant 4:241–251. doi:10.1093/mp/ssq072

    Article  CAS  PubMed  Google Scholar 

  68. Thiel G, Kreft M, Zorec R (2009) Rhythmic kinetics of single fusion and fission in a plant cell protoplast. Ann N Y Acad Sci 1152:1–6. doi:10.1111/j.1749-6632.2008.03996.x

    Article  CAS  PubMed  Google Scholar 

  69. Staal RG, Mosharov EV, Sulzer D (2004) Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci 7:341–346. doi:10.1038/nn1205

    Article  CAS  PubMed  Google Scholar 

  70. Zhou Z, Misler S, Chow RH (1996) Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys J 70:1543–1552. doi:10.1016/S0006-3495(96)79718-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Henkel AW, Meiri H, Horstmann H, Lindau M, Almers W (2000) Rhythmic opening and closing of vesicles during constitutive exo- and endocytosis in chromaffin cells. EMBO J 19:84–93. doi:10.1093/emboj/19.1.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Henkel AW, Kang G, Kornhuber J (2001) A common molecular machinery for exocytosis and the 'kiss-and-run' mechanism in chromaffin cells is controlled by phosphorylation. J Cell Sci 114:4613–4620

    CAS  PubMed  Google Scholar 

  73. Leng G, Ludwig M (2008) Neurotransmitters and peptides: whispered secrets and public announcements. J Physiol 586:5625–5632. doi:10.1113/jphysiol.2008.159103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barg S, Olofsson CS, Schriever-Abeln J, Wendt A, Gebre-Medhin S, Renstrom E, Rorsman P (2002) Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33:287–299

    Article  CAS  PubMed  Google Scholar 

  75. Harata NC, Choi S, Pyle JL, Aravanis AM, Tsien RW (2006) Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 49:243–256. doi:10.1016/j.neuron.2005.12.018

    Article  CAS  PubMed  Google Scholar 

  76. Kolarow R, Brigadski T, Lessmann V (2007) Postsynaptic secretion of BDNF and NT-3 from hippocampal neurons depends on calcium calmodulin kinase II signaling and proceeds via delayed fusion pore opening. J Neurosci 27:10350–10364. doi:10.1523/JNEUROSCI.0692-07.2007

    Article  CAS  PubMed  Google Scholar 

  77. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23. doi:10.1038/nrn3379

    Article  CAS  PubMed  Google Scholar 

  78. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547. doi:10.1146/annurev.neuro.26.041002.131412

    Article  CAS  PubMed  Google Scholar 

  79. Soldati T, Schliwa M (2006) Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7:897–908. doi:10.1038/nrm2060

    Article  CAS  PubMed  Google Scholar 

  80. Chang HC, Chen TL, Chen RM (2009) Cytoskeleton interruption in human hepatoma HepG2 cells induced by ketamine occurs possibly through suppression of calcium mobilization and mitochondrial function. Drug Metab Dispos: Biol Fate Chem 37:24–31. doi:10.1124/dmd.108.023325

    Article  CAS  Google Scholar 

  81. Koizumi S, Fujishita K, Tsuda M, Shigemoto-Mogami Y, Inoue K (2003) Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proc Natl Acad Sci U S A 100:11023–11028. doi:10.1073/pnas.1834448100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cotrina ML, Lin JH, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci 18:8794–8804

    CAS  PubMed  Google Scholar 

  83. Abdelhamid RE, Kovács KJ, Nunez MG, Larson AA (2014) Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors. Pharmacol Res 79:21–27. doi:10.1016/j.phrs.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  84. Bahnasi YM, Wright HM, Milligan CJ, Dedman AM, Zeng F, Hopkins PM, Bateson AN, Beech DJ (2008) Modulation of TRPC5 cation channels by halothane, chloroform and propofol. Br J Pharmacol 153:1505–1512. doi:10.1038/sj.bjp.0707689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Malarkey EB, Ni Y, Parpura V (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56:821–835. doi:10.1002/glia.20656

    Article  PubMed  Google Scholar 

  86. Verkhratsky A, Rodriguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56. doi:10.1016/j.mce.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  87. Li B, Dong L, Fu H, Wang B, Hertz L, Peng L (2011) Effects of chronic treatment with fluoxetine on receptor-stimulated increase of [Ca2+]i in astrocytes mimic those of acute inhibition of TRPC1 channel activity. Cell Calcium 50:42–53. doi:10.1016/j.ceca.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  88. Tóth A, Boczán J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L et al (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135:162–168. doi:10.1016/j.molbrainres.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  89. Mannari T, Morita S, Furube E, Tominaga M, Miyata S (2013) Astrocytic TRPV1 ion channels detect blood-borne signals in the sensory circumventricular organs of adult mouse brains. Glia 61:957–971. doi:10.1002/glia.22488

    Article  PubMed  Google Scholar 

  90. Chang Y, Chen TL, Sheu JR, Chen RM (2005) Suppressive effects of ketamine on macrophage functions. Toxicol Appl Pharmacol 204:27–35. doi:10.1016/j.taap.2004.08.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency grant nos. P3 310, J3 3236, J3 4051, J3-4146, J3 6790. V.P.’s work is supported by the National Institutes of Health (HD078678). We thank Dr. Masami Kojima and Dr. James E. Rothman for kindly providing the preproBDNF-EGFP and pCMV-SpHse plasmids, respectively. All DNA plasmids were sequenced at The Heflin Center Genomics Core at UAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Zorec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Exocytotic release of brain-derived neurotrophic factor (BDNF). BDNF-pHse, a fusion protein of BDNF and superecliptic phluorin (pHse), allowed us to monitor its release. ATP stimulation induces fusion of vesicles at the plasma membrane (PM). When a vesicle fuses with the PM, the acidic vesicular lumen connects to the alkaline extracellular space and pHse fluorescence intensity increases (a, left). This is followed by a decrease in the pHse fluorescence intensity due to release of BDNF-pHse (a, middle). BDNF-pHse is released by full fusion events (a, middle and Fig. 5), as revealed by NH4Cl application at the end of experiments (a, right and Fig. 2). Acidic environment inside non-fusing vesicle quenches pHse fluorescence (b, left). The fluorescence intensity increases when the vesicle lumen is artificially alkalinized by NH4Cl (b, right). Endogenously expressed (pro)BDNF was omitted for clarity. Not drawn to scale (GIF 12 kb)

High Resolution Image (TIF 344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenovec, M., Lasič, E., Božić, M. et al. Ketamine Inhibits ATP-Evoked Exocytotic Release of Brain-Derived Neurotrophic Factor from Vesicles in Cultured Rat Astrocytes. Mol Neurobiol 53, 6882–6896 (2016). https://doi.org/10.1007/s12035-015-9562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9562-y

Keywords

Navigation