Skip to main content

Advertisement

Log in

Inhibition of Calpain Activation Protects MPTP-Induced Nigral and Spinal Cord Neurodegeneration, Reduces Inflammation, and Improves Gait Dynamics in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, resulting in dopaminergic (DA) neuronal loss in the substantia nigra pars compacta (SNpc) and damage to the extranigral spinal cord neurons. Current therapies do not prevent the disease progression. Hence, developing efficacious therapeutic strategies for treatment of PD is of utmost importance. The goal of this study is to delineate the involvement of calpain-mediated inflammation and neurodegeneration in SN and spinal cord in MPTP-induced parkinsonian mice (C57BL/6 N), thereby elucidating potential therapeutic target(s). Increased calpain expression was found localized to tyrosine hydroxylase (TH+) neurons in SN with significantly increased TUNEL-positive neurons in SN and spinal cord neurons in MPTP mice. Inflammatory markers Cox-2, caspase-1, and NOS-2 were significantly upregulated in MPTP mouse spinal cord as compared to control. These parameters correlated with the activation of astrocytes, microglia, infiltration of CD4+/CD8+ T cells, and macrophages. We found that subpopulations of CD4+ cells (Th1 and Tregs) were differentially expanded in MPTP mice, which could be regulated by inhibition of calpain with the potent inhibitor calpeptin. Pretreatment with calpeptin (25 μg/kg, i.p.) attenuated glial activation, T cell infiltration, nigral dopaminergic degeneration in SN, and neuronal death in spinal cord. Importantly, calpeptin ameliorated MPTP-induced altered gait parameters (e.g., reduced stride length and increased stride frequency) as demonstrated by analyses of spatiotemporal gait indices using ventral plane videography. These findings suggest that calpain plays a pivotal role in MPTP-induced nigral and extranigral neurodegenerative processes and may be a valid therapeutic target in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DA:

Dopaminergic

deNFP:

Dephosphorylated neurofilament protein

GFAP:

Glial fibrillary acidic protein

IR:

Immunoreactivity

L-DOPA:

L-3,4-dihydroxyphenylalanine

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD:

Parkinson disease

SN:

Substantia nigra

TH:

Tyrosine hydroxylase

SBDP:

Spectrin break down product

References

  1. Olanow CW, Stocchi F, Lang AE (2011) Parkinson’s disease: non-motor and non-dopaminergic features. Wiley, Chichester

    Book  Google Scholar 

  2. Weintraub D, Dietz N, Duda JE, Wolk DA, Doshi J, Xie SX, Davatzikos C, Clark CM et al (2012) Alzheimer’s disease pattern of brain atrophy predicts cognitive decline in Parkinson’s disease. Brain 135(Pt 1):170–180. doi:10.1093/brain/awr277

    Article  PubMed Central  PubMed  Google Scholar 

  3. Palavra NC, Naismith SL, Lewis SJ (2013) Mild cognitive impairment in Parkinson’s disease: a review of current concepts. Neurol Res Int 2013:576091. doi:10.1155/2013/576091

    PubMed Central  PubMed  Google Scholar 

  4. Bocanegra Y, Trujillo-Orrego N, Pineda D (2014) Dementia and mild cognitive impairment in Parkinson’s disease: a review. Rev Neurol 59(12):555–569

    PubMed  Google Scholar 

  5. Knaryan VH, Samantaray S, Le Gal C, Ray SK, Banik NL (2011) Tracking extranigral degeneration in animal models of Parkinson’s disease: quest for effective therapeutic strategies. J Neurochem 118(3):326–338. doi:10.1111/j.1471-4159.2011.07320.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sanchez-Lopez F, Tasset I, Aguera E, Feijoo M, Fernandez-Bolanos R, Sanchez FM, Ruiz MC, Cruz AH et al (2012) Oxidative stress and inflammation biomarkers in the blood of patients with Huntington’s disease. Neurol Res 34(7):721–724. doi:10.1179/1743132812Y.0000000073

    Article  CAS  PubMed  Google Scholar 

  7. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23(4):474–483. doi:10.1002/mds.21751

    Article  PubMed  Google Scholar 

  8. Kamer AR, Dasanayake AP, Craig RG, Glodzik-Sobanska L, Bry M, de Leon MJ (2008) Alzheimer’s disease and peripheral infections: the possible contribution from periodontal infections, model and hypothesis. J Alzheimers Dis 13(4):437–449

    CAS  PubMed  Google Scholar 

  9. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291

    Article  CAS  PubMed  Google Scholar 

  10. Amor S, Woodroofe MN (2014) Innate and adaptive immune responses in neurodegeneration and repair. Immunology 141(3):287–291. doi:10.1111/imm.12134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Samantaray S, Knaryan VH, Shields DC, Banik NL (2013) Critical role of calpain in spinal cord degeneration in Parkinson’s disease. J Neurochem 127(6):880–890. doi:10.1111/jnc.12374

    Article  CAS  PubMed  Google Scholar 

  12. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87(1):10–20. doi:10.1016/j.brainresbull.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  13. Levesque S, Wilson B, Gregoria V, Thorpe LB, Dallas S, Polikov VS, Hong JS, Block ML (2010) Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. Brain 133(Pt 3):808–821. doi:10.1093/brain/awp333

    Article  PubMed Central  PubMed  Google Scholar 

  14. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. doi:10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  15. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D et al (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119(1):182–192. doi:10.1172/JCI36470

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106–107:17–32. doi:10.1016/j.pneurobio.2013.04.004

    Article  PubMed  Google Scholar 

  17. Jellinger KA (2014) The pathomechanisms underlying Parkinson’s disease. Expert Rev Neurother 14(2):199–215. doi:10.1586/14737175.2014.877842

    Article  CAS  PubMed  Google Scholar 

  18. Samantaray S, Ray SK, Banik NL (2008) Calpain as a potential therapeutic target in Parkinson’s disease. CNS Neurol Disord Drug Targets 7:305–312

    Article  CAS  PubMed  Google Scholar 

  19. Shields DC, Schaecher KE, Saido TC, Banik NL (1999) A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc Natl Acad Sci U S A 96(20):11486–11491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Trager N, Smith A, Wallace Iv G, Azuma M, Inoue J, Beeson C, Haque A, Banik NL (2014) Effects of a novel orally administered calpain inhibitor SNJ-1945 on immunomodulation and neurodegeneration in a murine model of multiple sclerosis. J Neurochem 130(2):268–279. doi:10.1111/jnc.12659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Knaryan VH, Samantaray S, Park S, Azuma M, Inoue J, Banik NL SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP(+) and rotenone. J Neurochem 130 (2):280–290. doi:10.1111/jnc.12629

  22. Crocker SJ, Smith PD, Jackson-Lewis V, Lamba WR, Hayley SP, Grimm E, Callaghan SM, Slack RS et al (2003) Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease. J Neurosci 23(10):4081–4091

    CAS  PubMed  Google Scholar 

  23. Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC (1996) Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience 73(4):979–987

    Article  CAS  PubMed  Google Scholar 

  24. Samantaray S, Knaryan VH, Le Gal C, Ray SK, Banik NL (2011) Calpain inhibition protected spinal cord motoneurons against 1-methyl-4-phenylpyridinium ion and rotenone. Neuroscience 192:263–274. doi:10.1016/j.neuroscience.2011.06.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Samantaray S, Ray SK, Ali SF, Banik NL (2006) Calpain activation in apoptosis of motoneurons in cell culture models of experimental parkinsonism. Ann N Y Acad Sci 1074:349–356. doi:10.1196/annals.1369.034

    Article  CAS  PubMed  Google Scholar 

  26. Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, Patrick C, Ubhi K et al (2014) Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34(28):9441–9454. doi:10.1523/JNEUROSCI.5314-13.2014

    Article  PubMed Central  PubMed  Google Scholar 

  27. Dufty BM, Warner LR, Hou ST, Jiang SX, Gomez-Isla T, Leenhouts KM, Oxford JT, Feany MB et al (2007) Calpain-cleavage of alpha-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol 170(5):1725–1738. doi:10.2353/ajpath.2007.061232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mishizen-Eberz AJ, Norris EH, Giasson BI, Hodara R, Ischiropoulos H, Lee VM, Trojanowski JQ, Lynch DR (2005) Cleavage of alpha-synuclein by calpain: potential role in degradation of fibrillized and nitrated species of alpha-synuclein. Biochemistry 44(21):7818–7829. doi:10.1021/bi047846q

    Article  CAS  PubMed  Google Scholar 

  29. Jin J, Shie FS, Liu J, Wang Y, Davis J, Schantz AM, Montine KS, Montine TJ et al (2007) Prostaglandin E2 receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated alpha-synuclein. J Neuroinflammation 4:2. doi:10.1186/1742-2094-4-2

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25(25):6016–6024. doi:10.1523/JNEUROSCI.0692-05.2005

    Article  CAS  PubMed  Google Scholar 

  31. Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30(5):244–250. doi:10.1016/j.tins.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  32. Samantaray S, Knaryan VH, Butler JT, Ray SK, Banik NL (2008) Spinal cord degeneration in C57BL/6N mice following induction of experimental parkinsonism with MPTP. J Neurochem 104(5):1309–1320. doi:10.1111/j.1471-4159.2007.05091.x

    Article  CAS  PubMed  Google Scholar 

  33. Vivacqua G, Biagioni F, Yu S, Casini A, Bucci D, D’Este L, Fornai F (2012) Loss of spinal motor neurons and alteration of alpha-synuclein immunostaining in MPTP induced Parkinsonism in mice. J Chem Neuroanat 44:76–85. doi:10.1016/j.jchemneu.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  34. Litteljohn D, Mangano E, Clarke M, Bobyn J, Moloney K, Hayley S (2011) Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson’s disease. Parkinsons Dis 713517. doi:10.4061/2011/713517

  35. Reynolds AD, Stone DK, Hutter JA, Benner EJ, Mosley RL, Gendelman HE (2010) Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 184(5):2261–2271. doi:10.4049/jimmunol.0901852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ray SK, Banik NL (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2(3):173–189

    Article  CAS  PubMed  Google Scholar 

  37. Chera B, Schaecher KE, Rocchini A, Imam SZ, Sribnick EA, Ray SK, Ali SF, Banik NL (2004) Immunofluorescent labeling of increased calpain expression and neuronal death in the spinal cord of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Brain Res 1006(2):150–156. doi:10.1016/j.brainres.2004.01.065

    Article  CAS  PubMed  Google Scholar 

  38. Del Tredici K, Braak H (2012) Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol 124(5):643–664. doi:10.1007/s00401-012-1028-y

    Article  PubMed  Google Scholar 

  39. Reynolds AD, Stone DK, Mosley RL, Gendelman HE (2009) Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets. J Immunol 182(7):4137–4149. doi:10.4049/jimmunol.0803982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Couch Y, Alvarez-Erviti L, Sibson NR, Wood MJ, Anthony DC (2011) The acute inflammatory response to intranigral alpha-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflammation 8:166. doi:10.1186/1742-2094-8-166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hurley MJ, Brandon B, Gentleman SM, Dexter DT (2013) Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain J Neurol 136(Pt 7):2077–2097. doi:10.1093/brain/awt134

    Article  Google Scholar 

  42. Liang CL, Sinton CM, Sonsalla PK, German DC (1996) Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration. Neurodegeneration 5(4):313–318

    Article  CAS  PubMed  Google Scholar 

  43. McMahon A, Wong BS, Iacopino AM, Ng MC, Chi S, German DC (1998) Calbindin-D28k buffers intracellular calcium and promotes resistance to degeneration in PC12 cells. Brain Res Mol Brain Res 54(1):56–63

    Article  CAS  PubMed  Google Scholar 

  44. Mouatt-Prigent A, Agid Y, Hirsch EC (1994) Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson’s disease? Brain Res 668(1–2):62–70

    Article  CAS  PubMed  Google Scholar 

  45. Butler JT, Samantaray S, Beeson CC, Ray SK, Banik NL (2009) Involvement of calpain in the process of Jurkat T cell chemotaxis. J Neurosci Res 87(3):626–635. doi:10.1002/jnr.21882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Smith AW, Doonan BP, Tyor WR, Abou-Fayssal N, Haque A, Banik NL (2011) Regulation of Th1/Th17 cytokines and IDO gene expression by inhibition of calpain in PBMCs from MS patients. J Neuroimmunol 232(1–2):179–185. doi:10.1016/j.jneuroim.2010.09.030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Schaecher K, Rocchini A, Dinkins J, Matzelle DD, Banik NL (2002) Calpain expression and infiltration of activated T cells in experimental allergic encephalomyelitis over time: increased calpain activity begins with onset of disease. J Neuroimmunol 129(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  48. Hickey WF, Gonatas NK, Kimura H, Wilson DB (1983) Identification and quantitation of T lymphocyte subsets found in the spinal cord of the Lewis rat during acute experimental allergic encephalomyelitis. J Immunol 131(6):2805–2809

    CAS  PubMed  Google Scholar 

  49. Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. doi:10.1146/annurev-immunol-032713-120240

    Article  CAS  PubMed  Google Scholar 

  50. Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, Jurado Coronel JC, Capani F et al (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8:211. doi:10.3389/fncel.2014.00211

    Article  PubMed Central  PubMed  Google Scholar 

  51. McDowell ML, Das A, Smith JA, Varma AK, Ray SK, Banik NL (2011) Neuroprotective effects of genistein in VSC4.1 motoneurons exposed to activated microglial cytokines. Neurochem Int 59(2):175–184. doi:10.1016/j.neuint.2011.04.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Tichauer J, Saud K, von Bernhardi R (2007) Modulation by astrocytes of microglial cell-mediated neuroinflammation: effect on the activation of microglial signaling pathways. Neuroimmunomodulation 14(3–4):168–174. doi:10.1159/000110642

    Article  CAS  PubMed  Google Scholar 

  53. Weiss JM, Downie SA, Lyman WD, Berman JW (1998) Astrocyte-derived monocyte-chemoattractant protein-1 directs the transmigration of leukocytes across a model of the human blood–brain barrier. J Immunol 161(12):6896–6903

    CAS  PubMed  Google Scholar 

  54. Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood–brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci Off J Socie Neurosci 19(24):10923–10930

    CAS  Google Scholar 

  55. Su X, Federoff HJ (2014) Immune responses in Parkinson’s disease: interplay between central and peripheral immune systems. BioMed Res Int 2014:275178. doi:10.1155/2014/275178

    PubMed Central  PubMed  Google Scholar 

  56. Desai BS, Monahan AJ, Carvey PM, Hendey B (2007) Blood–brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant 16(3):285–299

    Article  PubMed  Google Scholar 

  57. Stone DK, Reynolds AD, Mosley RL, Gendelman HE (2009) Innate and adaptive immunity for the pathobiology of Parkinson’s disease. Antioxid Redox Signal 11(9):2151–2166. doi:10.1089/ARS.2009.2460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57(2):176–179. doi:10.1002/ana.20369

    Article  CAS  PubMed  Google Scholar 

  59. Gonzalez H, Contreras F, Prado C, Elgueta D, Franz D, Bernales S, Pacheco R (2013) Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson’s disease. J Immunol 190(10):5048–5056. doi:10.4049/jimmunol.1203121

    Article  CAS  PubMed  Google Scholar 

  60. Blin O, Ferrandez AM, Serratrice G (1990) Quantitative analysis of gait in Parkinson patients: increased variability of stride length. J Neurol Sci 98(1):91–97

    Article  CAS  PubMed  Google Scholar 

  61. Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL (1998) Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord 13(3):428–437. doi:10.1002/mds.870130310

    Article  CAS  PubMed  Google Scholar 

  62. Morris ME, Huxham F, McGinley J, Dodd K, Iansek R (2001) The biomechanics and motor control of gait in Parkinson disease. Clin Biomech (Bristol, Avon) 16(6):459–470

    Article  CAS  Google Scholar 

  63. Morris ME, Matyas TA, Iansek R, Summers JJ (1996) Temporal stability of gait in Parkinson’s disease. Phys Ther 76(7):763–777, discussion 778–780

    CAS  PubMed  Google Scholar 

  64. Plotnik M, Hausdorff JM (2008) The role of gait rhythmicity and bilateral coordination of stepping in the pathophysiology of freezing of gait in Parkinson’s disease. Mov Disord 23(Suppl 2):S444–450. doi:10.1002/mds.21984

    Article  PubMed  Google Scholar 

  65. Schaafsma JD, Giladi N, Balash Y, Bartels AL, Gurevich T, Hausdorff JM (2003) Gait dynamics in Parkinson’s disease: relationship to Parkinsonian features, falls and response to levodopa. J Neurol Sci 212(1–2):47–53

    Article  PubMed  Google Scholar 

  66. Wu Y, Krishnan S (2010) Statistical analysis of gait rhythm in patients with Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng 18(2):150–158. doi:10.1109/TNSRE.2009.2033062

    Article  PubMed  Google Scholar 

  67. Karachi C, Grabli D, Bernard FA, Tande D, Wattiez N, Belaid H, Bardinet E, Prigent A et al (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 120(8):2745–2754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Amende I, Kale A, McCue S, Glazier S, Morgan JP, Hampton TG (2005) Gait dynamics in mouse models of Parkinson’s disease and Huntington’s disease. J Neuroeng Rehabil 2:20. doi:10.1186/1743-0003-2-20

    Article  PubMed Central  PubMed  Google Scholar 

  69. Goldberg NR, Hampton T, McCue S, Kale A, Meshul CK (2011) Profiling changes in gait dynamics resulting from progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal lesioning. J Neurosci Res 89(10):1698–1706. doi:10.1002/jnr.22699

    Article  CAS  PubMed  Google Scholar 

  70. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2(1):141–151. doi:10.1038/nprot.2006.342

    Article  CAS  PubMed  Google Scholar 

  71. Jakowec MW, Petzinger GM (2004) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned model of parkinson’s disease, with emphasis on mice and nonhuman primates. Comp Med 54(5):497–513

    CAS  PubMed  Google Scholar 

  72. Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76(5):1265–1274

    Article  CAS  PubMed  Google Scholar 

  73. Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77(4):1037–1048

    Article  CAS  PubMed  Google Scholar 

  74. Banik NL, Hogan EL, Jenkins MG, McDonald JK, McAlhaney WW, Sostek MB (1983) Purification of a calcium-activated neutral proteinase from bovine brain. Neurochem Res 8(11):1389–1405

    Article  CAS  PubMed  Google Scholar 

  75. Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146(2):741–755. doi:10.1016/j.neuroscience.2007.01.056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. God JM, Zhao D, Cameron CA, Amria S, Bethard JR, Haque A (2014) Disruption of HLA class II antigen presentation in Burkitt lymphoma: implication of a 47,000 MW acid labile protein in CD4+ T-cell recognition. Immunology 142(3):492–505. doi:10.1111/imm.12281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Kale A, Amende I, Meyer GP, Crabbe JC, Hampton TG (2004) Ethanol’s effects on gait dynamics in mice investigated by ventral plane videography. Alcohol Clin Exp Res 28(12):1839–1848

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Ajit Kale of Mouse Specifics for helpful suggestions during analysis of gait parameters. This study was funded in part by the RO1 grants from National Institute of Neurological Disorders and Stroke of the National Institutes of Health (NINDS-NIH; NS-62327-01A2; NS-56176 and NS-65456) and the Veterans Administration (I01 BX001262 and I01 BX002349).

Conflict of Interest

Authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naren L. Banik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samantaray, S., Knaryan, V.H., Shields, D.C. et al. Inhibition of Calpain Activation Protects MPTP-Induced Nigral and Spinal Cord Neurodegeneration, Reduces Inflammation, and Improves Gait Dynamics in Mice. Mol Neurobiol 52, 1054–1066 (2015). https://doi.org/10.1007/s12035-015-9255-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9255-6

Keywords

Navigation