Skip to main content

Advertisement

Log in

Modulation of the NMDA Receptor Through Secreted Soluble Factors

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-d-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Johnson-Venkatesh EM, Umemori H (2010) Secreted factors as synaptic organizers. Eur J Neurosci 32(2):181–190. doi:10.1111/j.1460-9568.2010.07338.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Scheiffele P (2003) Cell-cell signaling during synapse formation in the CNS. Annu Rev Neurosci 26:485–508. doi:10.1146/annurev.neuro.26.043002.094940

    Article  CAS  PubMed  Google Scholar 

  3. Park CH, Chang JY, Hahm ER, Park S, Kim HK, Yang CH (2005) Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun 328(1):227–234. doi:10.1016/j.bbrc.2004.12.151

    Article  CAS  PubMed  Google Scholar 

  4. Varela-Nallar L, Inestrosa NC (2013) Wnt signaling in the regulation of adult hippocampal neurogenesis. Front Cell Neurosci 7:100. doi:10.3389/fncel.2013.00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11(3):327–335

    Article  CAS  PubMed  Google Scholar 

  6. Groc L, Choquet D (2006) AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res 326(2):423–438. doi:10.1007/s00441-006-0254-9

    Article  CAS  PubMed  Google Scholar 

  7. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256(5060):1217–1221

    Article  CAS  PubMed  Google Scholar 

  8. Tovar KR, Westbrook GL (2002) Mobile NMDA receptors at hippocampal synapses. Neuron 34(2):255–264

    Article  CAS  PubMed  Google Scholar 

  9. Casado M, Isope P, Ascher P (2002) Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron 33(1):123–130

    Article  CAS  PubMed  Google Scholar 

  10. Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48(2):289–301. doi:10.1016/j.neuron.2005.08.034

    Article  CAS  PubMed  Google Scholar 

  11. Alvarez VA, Ridenour DA, Sabatini BL (2007) Distinct structural and ionotropic roles of NMDA receptors in controlling spine and synapse stability. J Neurosci: Off J Soc Neurosci 27(28):7365–7376. doi:10.1523/JNEUROSCI. 0956-07.2007

    Article  CAS  Google Scholar 

  12. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45(5):583–595. doi:10.1016/j.neuint.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  13. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. doi:10.1038/nrn3504

    Article  CAS  PubMed  Google Scholar 

  14. Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82(2):279–293. doi:10.1016/j.neuron.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  15. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496. doi:10.1124/pr.109.002451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Legendre P, Westbrook GL (1990) The inhibition of single N-methyl-D-aspartate-activated channels by zinc ions on cultured rat neurones. J Physiol 429:429–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Groc L, Bard L, Choquet D (2009) Surface trafficking of N-methyl-D-aspartate receptors: physiological and pathological perspectives. Neuroscience 158(1):4–18. doi:10.1016/j.neuroscience.2008.05.029

    Article  CAS  PubMed  Google Scholar 

  18. Contractor A, Heinemann SF (2002) Glutamate receptor trafficking in synaptic plasticity. Sci STKE 2002(156):re14. doi:10.1126/stke.2002.156.re14

    PubMed  Google Scholar 

  19. Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344(6187):992–997. doi:10.1126/science.1251915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511(7508):191–197. doi:10.1038/nature13548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55(7):1081–1094. doi:10.1016/j.neuropharm.2008.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kirson ED, Schirra C, Konnerth A, Yaari Y (1999) Early postnatal switch in magnesium sensitivity of NMDA receptors in rat CA1 pyramidal cells. J Physiol 521(Pt 1):99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540

    Article  CAS  PubMed  Google Scholar 

  24. Nase G, Weishaupt J, Stern P, Singer W, Monyer H (1999) Genetic and epigenetic regulation of NMDA receptor expression in the rat visual cortex. Eur J Neurosci 11(12):4320–4326

    Article  CAS  PubMed  Google Scholar 

  25. Quinlan EM, Philpot BD, Huganir RL, Bear MF (1999) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2(4):352–357. doi:10.1038/7263

    Article  CAS  PubMed  Google Scholar 

  26. Foster KA, McLaughlin N, Edbauer D, Phillips M, Bolton A, Constantine-Paton M, Sheng M (2010) Distinct roles of NR2A and NR2B cytoplasmic tails in long-term potentiation. J Neurosci: Off J Soc Neurosci 30(7):2676–2685. doi:10.1523/JNEUROSCI. 4022-09.2010

    Article  CAS  Google Scholar 

  27. Philpot BD, Sekhar AK, Shouval HZ, Bear MF (2001) Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29(1):157–169

    Article  CAS  PubMed  Google Scholar 

  28. Quinlan EM, Lebel D, Brosh I, Barkai E (2004) A molecular mechanism for stabilization of learning-induced synaptic modifications. Neuron 41(2):185–192

    Article  CAS  PubMed  Google Scholar 

  29. Carmignoto G, Vicini S (1992) Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258(5084):1007–1011

    Article  CAS  PubMed  Google Scholar 

  30. Barth AL, Malenka RC (2001) NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses. Nat Neurosci 4(3):235–236. doi:10.1038/85070

    Article  CAS  PubMed  Google Scholar 

  31. Yoshimura Y, Ohmura T, Komatsu Y (2003) Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex. J Neurosci: Off J Soc Neurosci 23(16):6557–6566

    CAS  Google Scholar 

  32. Gambrill AC, Barria A (2011) NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc Natl Acad Sci U S A 108(14):5855–5860. doi:10.1073/pnas.1012676108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Allison DW, Chervin AS, Gelfand VI, Craig AM (2000) Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci: Off J Soc Neurosci 20(12):4545–4554

    CAS  Google Scholar 

  34. Allison DW, Gelfand VI, Spector I, Craig AM (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J Neurosci: Off J Soc Neurosci 18(7):2423–2436

    CAS  Google Scholar 

  35. Kuriu T, Inoue A, Bito H, Sobue K, Okabe S (2006) Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J Neurosci: Off J Soc Neurosci 26(29):7693–7706. doi:10.1523/JNEUROSCI. 0522-06.2006

    Article  CAS  Google Scholar 

  36. Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM, Sheng M (1997) Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385(6615):439–442. doi:10.1038/385439a0

    Article  CAS  PubMed  Google Scholar 

  37. Akashi K, Kakizaki T, Kamiya H, Fukaya M, Yamasaki M, Abe M, Natsume R, Watanabe M, Sakimura K (2009) NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses. J Neurosci: Off J Soc Neurosci 29(35):10869–10882. doi:10.1523/JNEUROSCI. 5531-08.2009

    Article  CAS  Google Scholar 

  38. Barria A, Malinow R (2002) Subunit-specific NMDA receptor trafficking to synapses. Neuron 35(2):345–353

    Article  CAS  PubMed  Google Scholar 

  39. Salinas PC, Zou Y (2008) Wnt signaling in neural circuit assembly. Annu Rev Neurosci 31:339–358. doi:10.1146/annurev.neuro.31.060407.125649

    Article  CAS  PubMed  Google Scholar 

  40. Toledo EM, Colombres M, Inestrosa NC (2008) Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol 86(3):281–296. doi:10.1016/j.pneurobio.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  41. Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol 6(1):64–74. doi:10.1093/jmcb/mjt051

    Article  PubMed  Google Scholar 

  42. Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100(5):525–535

    Article  CAS  PubMed  Google Scholar 

  43. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8(1):34–42. doi:10.1038/nn1374

    Article  CAS  PubMed  Google Scholar 

  44. Ahmad-Annuar A, Ciani L, Simeonidis I, Herreros J, Fredj NB, Rosso SB, Hall A, Brickley S, Salinas PC (2006) Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 174(1):127–139. doi:10.1083/jcb.200511054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cerpa W, Godoy JA, Alfaro I, Farias GG, Metcalfe MJ, Fuentealba R, Bonansco C, Inestrosa NC (2008) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283(9):5918–5927. doi:10.1074/jbc.M705943200

    Article  CAS  PubMed  Google Scholar 

  46. Rosso SB, Inestrosa NC (2013) WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 7:103. doi:10.3389/fncel.2013.00103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen J, Park CS, Tang SJ (2006) Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem 281(17):11910–11916. doi:10.1074/jbc.M511920200

    Article  CAS  PubMed  Google Scholar 

  48. Cerpa W, Gambrill A, Inestrosa NC, Barria A (2011) Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci 31(26):9466–9471. doi:10.1523/JNEUROSCI. 6311-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vargas JY, Fuenzalida M, Inestrosa NC (2014) In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer’s disease model. J Neurosci: Off J Soc Neurosci 34(6):2191–2202. doi:10.1523/JNEUROSCI. 0862-13.2014

    Article  CAS  Google Scholar 

  50. Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281(32):22429–22433. doi:10.1074/jbc.R600015200

    Article  CAS  PubMed  Google Scholar 

  51. Oliva CA, Vargas JY, Inestrosa NC (2013) Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 7:224. doi:10.3389/fncel.2013.00224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Cappuccio I, Calderone A, Busceti CL, Biagioni F, Pontarelli F, Bruno V, Storto M, Terstappen GT, Gaviraghi G, Fornai F, Battaglia G, Melchiorri D, Zukin RS, Nicoletti F, Caricasole A (2005) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is required for the development of ischemic neuronal death. J Neurosci: Off J Soc Neurosci 25(10):2647–2657. doi:10.1523/JNEUROSCI. 5230-04.2005

    Article  CAS  Google Scholar 

  53. Dinamarca MC, Colombres M, Cerpa W, Bonansco C, Inestrosa NC (2008) Beta-amyloid oligomers affect the structure and function of the postsynaptic region: role of the Wnt signaling pathway. Neurodegener Dis 5(3–4):149–152. doi:10.1159/000113687

    Article  CAS  PubMed  Google Scholar 

  54. Cerpa W, Farias GG, Godoy JA, Fuenzalida M, Bonansco C, Inestrosa NC (2010) Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener 5:3. doi:10.1186/1750-1326-5-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Seitz R, Hackl S, Seibuchner T, Tamm ER, Ohlmann A (2010) Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/beta-catenin signaling pathway and the induction of neuroprotective growth factors in Muller cells. J Neurosci: Off J Soc Neurosci 30(17):5998–6010. doi:10.1523/JNEUROSCI. 0730-10.2010

    Article  CAS  Google Scholar 

  56. Ohlmann A, Tamm ER (2012) Norrin: molecular and functional properties of an angiogenic and neuroprotective growth factor. Prog Retin Eye Res 31(3):243–257. doi:10.1016/j.preteyeres.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  57. Dinamarca MC, Sagal JP, Quintanilla RA, Godoy JA, Arrazola MS, Inestrosa NC (2010) Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol Neurodegener 5:4. doi:10.1186/1750-1326-5-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Coba MP, Komiyama NH, Nithianantharajah J, Kopanitsa MV, Indersmitten T, Skene NG, Tuck EJ, Fricker DG, Elsegood KA, Stanford LE, Afinowi NO, Saksida LM, Bussey TJ, O’Dell TJ, Grant SG (2012) TNiK is required for postsynaptic and nuclear signaling pathways and cognitive function. J Neurosci: Off J Soc Neurosci 32(40):13987–13999. doi:10.1523/JNEUROSCI. 2433-12.2012

    Article  CAS  Google Scholar 

  59. Olkku A, Mahonen A (2008) Wnt and steroid pathways control glutamate signalling by regulating glutamine synthetase activity in osteoblastic cells. Bone 43(3):483–493. doi:10.1016/j.bone.2008.04.016

    Article  CAS  PubMed  Google Scholar 

  60. Abe K, Takeichi M (2007) NMDA-receptor activation induces calpain-mediated beta-catenin cleavages for triggering gene expression. Neuron 53(3):387–397. doi:10.1016/j.neuron.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  61. Jang YN, Jung YS, Lee SH, Moon CH, Kim CH, Baik EJ (2009) Calpain-mediated N-cadherin proteolytic processing in brain injury. J Neurosci: Off J Soc Neurosci 29(18):5974–5984. doi:10.1523/JNEUROSCI. 6178-08.2009

    Article  CAS  Google Scholar 

  62. Wan XZ, Li B, Li YC, Yang XL, Zhang W, Zhong L, Tang SJ (2012) Activation of NMDA receptors upregulates a disintegrin and metalloproteinase 10 via a Wnt/MAPK signaling pathway. J Neurosci: Off J Soc Neurosci 32(11):3910–3916. doi:10.1523/JNEUROSCI. 3916-11.2012

    Article  CAS  Google Scholar 

  63. Davidson ME, Kerepesi LA, Soto A, Chan VT (2009) D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats. Arch Toxicol 83(8):747–762. doi:10.1007/s00204-009-0405-3

    Article  CAS  PubMed  Google Scholar 

  64. Potschka H (2010) Targeting regulation of ABC efflux transporters in brain diseases: a novel therapeutic approach. Pharmacol Ther 125(1):118–127. doi:10.1016/j.pharmthera.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  65. Zhang YK, Huang ZJ, Liu S, Liu YP, Song AA, Song XJ (2013) WNT signaling underlies the pathogenesis of neuropathic pain in rodents. J Clin Invest 123(5):2268–2286. doi:10.1172/JCI65364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF, Derkach V, Soderling TR (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50(6):897–909. doi:10.1016/j.neuron.2006.05.008

    Article  CAS  PubMed  Google Scholar 

  67. Li Y, Li B, Wan X, Zhang W, Zhong L, Tang SJ (2012) NMDA receptor activation stimulates transcription-independent rapid wnt5a protein synthesis via the MAPK signaling pathway. Mol Brain 5:1. doi:10.1186/1756-6606-5-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Singh AP, VijayRaghavan K, Rodrigues V (2010) Dendritic refinement of an identified neuron in the Drosophila CNS is regulated by neuronal activity and Wnt signaling. Development 137(8):1351–1360. doi:10.1242/dev.044131

    Article  CAS  PubMed  Google Scholar 

  69. Varela-Nallar L, Alfaro IE, Serrano FG, Parodi J, Inestrosa NC (2010) Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci U S A 107(49):21164–21169. doi:10.1073/pnas.1010011107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu Q, Li Y, Xiao B (2013) DISC1-related signaling pathways in adult neurogenesis of the hippocampus. Gene 518(2):223–230. doi:10.1016/j.gene.2013.01.015

    Article  CAS  PubMed  Google Scholar 

  71. Khalaf-Nazzal R, Francis F (2013) Hippocampal development—old and new findings. Neuroscience 248C:225–242. doi:10.1016/j.neuroscience.2013.05.061

    Article  CAS  Google Scholar 

  72. Munoz FJ, Godoy JA, Cerpa W, Poblete IM, Huidobro-Toro JP, Inestrosa NC (2014) Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons. Biochem Biophys Res Commun 444(2):189–194. doi:10.1016/j.bbrc.2014.01.031

    Article  CAS  PubMed  Google Scholar 

  73. Meakin SO, Shooter EM (1992) The nerve growth factor family of receptors. Trends Neurosci 15(9):323–331

    Article  CAS  PubMed  Google Scholar 

  74. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23. doi:10.1038/nrn3379

    Article  CAS  PubMed  Google Scholar 

  75. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76(2):99–125. doi:10.1016/j.pneurobio.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  76. Salter MW, Dong Y, Kalia LV, Liu XJ, Pitcher G (2009) Regulation of NMDA receptors by kinases and phosphatases. In: Van Dongen AM (ed) Biology of NMDA receptor. CRC Press, Boca Raton

  77. Caldeira MV, Melo CV, Pereira DB, Carvalho R, Correia SS, Backos DS, Carvalho AL, Esteban JA, Duarte CB (2007) Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 282(17):12619–12628. doi:10.1074/jbc.M700607200

    Article  CAS  PubMed  Google Scholar 

  78. Suen PC, Wu K, Levine ES, Mount HT, Xu JL, Lin SY, Black IB (1997) Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-D-aspartate receptor subunit 1. Proc Natl Acad Sci U S A 94(15):8191–8195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin SY, Wu K, Levine ES, Mount HT, Suen PC, Black IB (1998) BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Res Mol Brain Res 55(1):20–27

    Article  CAS  PubMed  Google Scholar 

  80. Alder J, Thakker-Varia S, Crozier RA, Shaheen A, Plummer MR, Black IB (2005) Early presynaptic and late postsynaptic components contribute independently to brain-derived neurotrophic factor-induced synaptic plasticity. J Neurosci: Off J Soc Neurosci 25(12):3080–3085. doi:10.1523/JNEUROSCI. 2970-04.2005

    Article  CAS  Google Scholar 

  81. Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T, Yamamoto T (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 276(1):693–699. doi:10.1074/jbc.M008085200

    Article  CAS  PubMed  Google Scholar 

  82. Xu F, Plummer MR, Len GW, Nakazawa T, Yamamoto T, Black IB, Wu K (2006) Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation. Brain Res 1121(1):22–34. doi:10.1016/j.brainres.2006.08.129

    Article  CAS  PubMed  Google Scholar 

  83. Crozier RA, Black IB, Plummer MR (1999) Blockade of NR2B-containing NMDA receptors prevents BDNF enhancement of glutamatergic transmission in hippocampal neurons. Learn Mem 6(3):257–266

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Elmariah SB, Crumling MA, Parsons TD, Balice-Gordon RJ (2004) Postsynaptic TrkB-mediated signaling modulates excitatory and inhibitory neurotransmitter receptor clustering at hippocampal synapses. J Neurosci: Off J Soc Neurosci 24(10):2380–2393. doi:10.1523/JNEUROSCI. 4112-03.2004

    Article  CAS  Google Scholar 

  85. Levine ES, Crozier RA, Black IB, Plummer MR (1998) Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc Natl Acad Sci U S A 95(17):10235–10239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Slack SE, Pezet S, McMahon SB, Thompson SW, Malcangio M (2004) Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci 20(7):1769–1778. doi:10.1111/j.1460-9568.2004.03656.x

    Article  PubMed  Google Scholar 

  87. Yi H, Hu J, Qian J, Hackam AS (2012) Expression of brain-derived neurotrophic factor is regulated by the Wnt signaling pathway. Neuroreport 23(3):189–194. doi:10.1097/WNR.0b013e32834fab06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Itoh N (2007) The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 30(10):1819–1825

    Article  CAS  PubMed  Google Scholar 

  89. Itoh N, Ornitz DM (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20(11):563–569. doi:10.1016/j.tig.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  90. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2(3):REVIEWS3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thisse B, Thisse C (2005) Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 287(2):390–402. doi:10.1016/j.ydbio.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  92. Guo ZH, Mattson MP (2000) Neurotrophic factors protect cortical synaptic terminals against amyloid and oxidative stress-induced impairment of glucose transport, glutamate transport and mitochondrial function. Cereb Cortex 10(1):50–57

    Article  CAS  PubMed  Google Scholar 

  93. Mattson MP, Kumar KN, Wang H, Cheng B, Michaelis EK (1993) Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. J Neurosci: Off J Soc Neurosci 13(11):4575–4588

    CAS  Google Scholar 

  94. Mattson MP, Murrain M, Guthrie PB, Kater SB (1989) Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci: Off J Soc Neurosci 9(11):3728–3740

    CAS  Google Scholar 

  95. Zhao M, Li D, Shimazu K, Zhou YX, Lu B, Deng CX (2007) Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol Psychiatry 62(5):381–390. doi:10.1016/j.biopsych.2006.10.019

    Article  CAS  PubMed  Google Scholar 

  96. Umemori H, Linhoff MW, Ornitz DM, Sanes JR (2004) FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118(2):257–270. doi:10.1016/j.cell.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  97. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  CAS  PubMed  Google Scholar 

  98. Wakefield LM, Hill CS (2013) Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer 13(5):328–341. doi:10.1038/nrc3500

    Article  CAS  PubMed  Google Scholar 

  99. Ueda K, Nakahara T, Mori A, Sakamoto K, Ishii K (2013) Protective effects of TGF-beta inhibitors in a rat model of NMDA-induced retinal degeneration. Eur J Pharmacol 699(1–3):188–193. doi:10.1016/j.ejphar.2012.11.054

    Article  CAS  PubMed  Google Scholar 

  100. Petegnief V, Friguls B, Sanfeliu C, Sunol C, Planas AM (2003) Transforming growth factor-alpha attenuates N-methyl-D-aspartic acid toxicity in cortical cultures by preventing protein synthesis inhibition through an Erk1/2-dependent mechanism. J Biol Chem 278(32):29552–29559. doi:10.1074/jbc.M300661200

    Article  CAS  PubMed  Google Scholar 

  101. Bae JJ, Xiang YY, Martinez-Canabal A, Frankland PW, Yang BB, Lu WY (2011) Increased transforming growth factor-beta1 modulates glutamate receptor expression in the hippocampus. Int J Physiol Pathophysiol Pharmacol 3(1):9–20

    CAS  PubMed  Google Scholar 

  102. Kurisaki A, Inoue I, Kurisaki K, Yamakawa N, Tsuchida K, Sugino H (2008) Activin induces long-lasting N-methyl-D-aspartate receptor activation via scaffolding PDZ protein activin receptor interacting protein 1. Neuroscience 151(4):1225–1235. doi:10.1016/j.neuroscience.2007.12.012

    Article  CAS  PubMed  Google Scholar 

  103. Inokuchi K, Kato A, Hiraia K, Hishinuma F, Inoue M, Ozawa F (1996) Increase in activin beta A mRNA in rat hippocampus during long-term potentiation. FEBS Lett 382(1–2):48–52

    Article  CAS  PubMed  Google Scholar 

  104. Muller MR, Zheng F, Werner S, Alzheimer C (2006) Transgenic mice expressing dominant-negative activin receptor IB in forebrain neurons reveal novel functions of activin at glutamatergic synapses. J Biol Chem 281(39):29076–29084. doi:10.1074/jbc.M604959200

    Article  PubMed  CAS  Google Scholar 

  105. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, Smith LK, Bieri G, Lin K, Berdnik D, Wabl R, Udeochu J, Wheatley EG, Zou B, Simmons DA, Xie XS, Longo FM, Wyss-Coray T (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. doi:10.1038/nm.3569

    PubMed  PubMed Central  Google Scholar 

  106. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. doi:10.1126/science.1251141

    PubMed  PubMed Central  Google Scholar 

  107. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. doi:10.1146/annurev.cellbio.20.010403.113126

    Article  CAS  PubMed  Google Scholar 

  108. Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11(2):77–86. doi:10.1038/nrn2755

    Article  CAS  PubMed  Google Scholar 

  109. Budnik V, Salinas PC (2011) Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol 21(1):151–159. doi:10.1016/j.conb.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10(2):116–129. doi:10.1038/nrc2780

    Article  CAS  PubMed  Google Scholar 

  111. Jbabdi S, Behrens TE (2013) Long-range connectomics. Ann N Y Acad Sci 1305:83–93. doi:10.1111/nyas.12271

    Article  PubMed  PubMed Central  Google Scholar 

  112. Scott DB, Blanpied TA, Swanson GT, Zhang C, Ehlers MD (2001) An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci: Off J Soc Neurosci 21(9):3063–3072

    CAS  Google Scholar 

  113. Tingley WG, Roche KW, Thompson AK, Huganir RL (1993) Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain. Nature 364(6432):70–73. doi:10.1038/364070a0

    Article  CAS  PubMed  Google Scholar 

  114. Aman TK, Maki BA, Ruffino TJ, Kasperek EM, Popescu GK (2014) Separate intramolecular targets for protein kinase A control N-methyl-D-aspartate receptor gating and Ca2+ permeability. J Biol Chem 289(27):18805–18817. doi:10.1074/jbc.M113.537282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Krupp JJ, Vissel B, Thomas CG, Heinemann SF, Westbrook GL (2002) Calcineurin acts via the C-terminus of NR2A to modulate desensitization of NMDA receptors. Neuropharmacology 42(5):593–602

    Article  CAS  PubMed  Google Scholar 

  116. Maki BA, Cole R, Popescu GK (2013) Two serine residues on GluN2A C-terminal tails control NMDA receptor current decay times. Channels (Austin) 7(2):126–132. doi:10.4161/chan.23968

    Article  CAS  Google Scholar 

  117. Wang J, Liu S, Fu Y, Wang JH, Lu Y (2003) Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6(10):1039–1047. doi:10.1038/nn1119

    Article  CAS  PubMed  Google Scholar 

  118. Grant ER, Guttmann RP, Seifert KM, Lynch DR (2001) A region of the rat N-methyl-D-aspartate receptor 2A subunit that is sufficient for potentiation by phorbol esters. Neurosci Lett 310(1):9–12

    Article  CAS  PubMed  Google Scholar 

  119. Jones ML, Leonard JP (2005) PKC site mutations reveal differential modulation by insulin of NMDA receptors containing NR2A or NR2B subunits. J Neurochem 92(6):1431–1438. doi:10.1111/j.1471-4159.2004.02985.x

    Article  CAS  PubMed  Google Scholar 

  120. Gardoni F, Bellone C, Cattabeni F, Di Luca M (2001) Protein kinase C activation modulates alpha-calmodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex. J Biol Chem 276(10):7609–7613. doi:10.1074/jbc.M009922200

    Article  CAS  PubMed  Google Scholar 

  121. Kohr G, Seeburg PH (1996) Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J Physiol 492(Pt 2):445–452

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zheng F, Gingrich MB, Traynelis SF, Conn PJ (1998) Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat Neurosci 1(3):185–191. doi:10.1038/634

    Article  CAS  PubMed  Google Scholar 

  123. Sanz-Clemente A, Matta JA, Isaac JT, Roche KW (2010) Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 67(6):984–996. doi:10.1016/j.neuron.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Omkumar RV, Kiely MJ, Rosenstein AJ, Min KT, Kennedy MB (1996) Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 271(49):31670–31678

    Article  CAS  PubMed  Google Scholar 

  125. Liao GY, Wagner DA, Hsu MH, Leonard JP (2001) Evidence for direct protein kinase-C mediated modulation of N-methyl-D-aspartate receptor current. Mol Pharmacol 59(5):960–964

    CAS  PubMed  Google Scholar 

  126. Rocher C, Gardier AM (2001) Effects of repeated systemic administration of d-Fenfluramine on serotonin and glutamate release in rat ventral hippocampus: comparison with methamphetamine using in vivo microdialysis. Naunyn Schmiedebergs Arch Pharmacol 363(4):422–428

    Article  CAS  PubMed  Google Scholar 

  127. Murphy JA, Stein IS, Lau CG, Peixoto RT, Aman TK, Kaneko N, Aromolaran K, Saulnier JL, Popescu GK, Sabatini BL, Hell JW, Zukin RS (2014) Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in spines. J Neurosci: Off J Soc Neurosci 34(3):869–879. doi:10.1523/JNEUROSCI. 4538-13.2014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported through grants from Fondecyt No. 11121206 to WC, Fondecyt No. 1120156 and the Basal Centre for Excellence in Science and Technology (Conicyt-PFB 12/2007) to NCI, and a postdoctoral fellowship from CONICYT Fondecyt Postdoctorado No. 3140355 to ERF. The authors would also like to thank Felipe Serrano for assistance with the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldo Cerpa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerpa, W., Ramos-Fernández, E. & Inestrosa, N.C. Modulation of the NMDA Receptor Through Secreted Soluble Factors. Mol Neurobiol 53, 299–309 (2016). https://doi.org/10.1007/s12035-014-9009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9009-x

Keywords

Navigation