Skip to main content

Advertisement

Log in

Nhej1 Deficiency Causes Abnormal Development of the Cerebral Cortex

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

DNA double-strand breaks (DSBs) frequently occur in rapidly dividing cells such as proliferating progenitors during central nervous system development. If they cannot be repaired, these lesions will cause cell death. The non-homologous end joining (NHEJ) DNA repair pathway is the only pathway available to repair DSBs in post-mitotic neurons. The non-homologous end joining factor 1 (Nhej1) protein is a key component of the NHEJ pathway. Nhej1 interacts with Xrcc4 and Lig4 to repair DSBs. Loss of function of Xrcc4 or Lig4 is embryonic lethal in the mouse while the loss of Nhej1 is not. Surprisingly, the brains of Nhej1-deficient mice appear to be normal although NHEJ1 deficiency in humans causes severe neurological dysfunction and microcephaly. Here, we studied the consequences of Nhej1 dysfunction for the development of the cerebral cortex using in utero electroporation of inactivating small hairpin RNAs (shRNAs) in the developing rat brain. We found that decreasing Nhej1 expression during neuronal migration phases causes severe neuronal migration defects visualized at embryonic stages by an accumulation of heterotopic neurons in the intermediate zone. Knocked-down cells die by 7 days after birth and the brain regions where RNA interference was achieved are structurally abnormal, suffering from a reduction of the width of the external cortical layers. These results indicate that the Nhej1 protein is necessary for proper rat cortical development. Neurons unable to properly repair DNA DSBs are unable to reach their final destination during the development and undergo apoptosis, leading to an abnormal cortical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CP:

Cortical plate

DSBs:

Double-strand breaks

HR:

Homologous recombination

IZ:

Intermediate zone

LIG4:

Ligase IV

LV:

Lateral ventricle

NeuN:

Neuronal nuclear antigen

NHEJ:

Non-homologous end joining

NHEJ1:

Non-homologous end joining factor 1

TUNEL:

Terminal deoxynucleotidyltransferase-mediated dUTP end labeling

VZ:

Ventricular zone

References

  1. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  PubMed  Google Scholar 

  2. Gao Y, Sun Y, Frank KM, Dikkes P, Fujiwara Y, Seidl KJ, Sekiguchi JM, Rathbun GA, Swat W, Wang J, Bronson RT, Malynn BA, Bryans M, Zhu C, Chaudhuri J, Davidson L, Ferrini R, Stamato T, Orkin SH, Greenberg ME, Alt FW (1998) A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95:891–902

    Article  CAS  PubMed  Google Scholar 

  3. Osborn AJ, Elledge SJ, Zou L (2002) Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 12:509–516

    Article  CAS  PubMed  Google Scholar 

  4. Gatz SA, Ju L, Gruber R, Hoffmann E, Carr AM, Wang ZQ, Liu C, Jeggo PA (2011) Requirement for DNA ligase IV during embryonic neuronal development. J Neurosci 31:10088–10100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vyjayanti VN, Rao KS (2006) DNA double strand break repair in brain: reduced NHEJ activity in aging rat neurons. Neurosci Lett 393:18–22

    Article  CAS  PubMed  Google Scholar 

  6. Orii KE, Lee Y, Kondo N, McKinnon PJ (2006) Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc Natl Acad Sci U S A 103:10017–10022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124:301–313

    Article  CAS  PubMed  Google Scholar 

  8. Hammel M, Yu Y, Fang S, Lees-Miller SP, Tainer JA (2010) XLF regulates filament architecture of the XRCC4.ligase IV complex. Structure 18:1431–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McKinnon PJ (2009) DNA repair deficiency and neurological disease. Nat Rev Neurosci 10:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, Hirsch B, Gennery A, Palmer SE, Seidel J, Gatti RA, Varon R, Oettinger MA, Neitzel H, Jeggo PA, Concannon P (2001) DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 8:1175–1185

    Article  PubMed  Google Scholar 

  12. Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, Plebani A, Stephan JL, Hufnagel M, le Deist F, Fischer A, Durandy A, de Villartay JP, Revy P (2006) Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124:287–299

    Article  CAS  PubMed  Google Scholar 

  13. Cantagrel V, Lossi AM, Lisgo S, Missirian C, Borges A, Philip N, Fernandez C, Cardoso C, Figarella-Branger D, Moncla A, Lindsay S, Dobyns WB, Villard L (2007) Truncation of NHEJ1 in a patient with polymicrogyria. Hum Mutat 28:356–364

    Article  CAS  PubMed  Google Scholar 

  14. Barnes DE, Stamp G, Rosewell I, Denzel A, Lindahl T (1998) Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr Biol 8:1395–1398

    Article  CAS  PubMed  Google Scholar 

  15. Gu Y, Sekiguchi J, Gao Y, Dikkes P, Frank K, Ferguson D, Hasty P, Chun J, Alt FW (2000) Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc Natl Acad Sci U S A 97:2668–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vemuri MC, Schiller E, Naegele JR (2001) Elevated DNA double strand breaks and apoptosis in the CNS of scid mutant mice. Cell Death Differ 8:245–255

    Article  CAS  PubMed  Google Scholar 

  17. Li G, Alt FW, Cheng HL, Brush JW, Goff PH, Murphy MM, Franco S, Zhang Y, Zha S (2008) Lymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination. Mol Cell 31:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buck D, Moshous D, de Chasseval R, Ma Y, le Deist F, Cavazzana-Calvo M, Fischer A, Casanova JL, Lieber MR, de Villartay JP (2006) Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. Eur J Immunol 36:224–235

    Article  CAS  PubMed  Google Scholar 

  19. Nieto M, Monuki ES, Tang H, Imitola J, Haubst N, Khoury SJ, Cunningham J, Gotz M, Walsh CA (2004) Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J Comp Neurol 479:168–180

    Article  CAS  PubMed  Google Scholar 

  20. Sharma M, Brantley JG, Vassmer D, Chaturvedi G, Baas J, Vanden Heuvel GB (2009) The homeodomain protein Cux1 interacts with Grg4 to repress p27 kip1 expression during kidney development. Gene 439:87–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Le Douce V, Colin L, Redel L, Cherrier T, Herbein G, Aunis D, Rohr O, Van Lint C, Schwartz C (2012) LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing. Nucleic Acids Res 40:1904–1915

    Article  PubMed  Google Scholar 

  22. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    CAS  PubMed  Google Scholar 

  23. Cheong JW, Chong SY, Kim JY, Eom JI, Jeung HK, Maeng HY, Lee ST, Min YH (2003) Induction of apoptosis by apicidin, a histone deacetylase inhibitor, via the activation of mitochondria-dependent caspase cascades in human Bcr-Abl-positive leukemia cells. Clin Cancer Res 9:5018–5027

    CAS  PubMed  Google Scholar 

  24. French CA, Groszer M, Preece C, Coupe AM, Rajewsky K, Fisher SE (2007) Generation of mice with a conditional Foxp2 null allele. Genesis 45:40–46

    Article  Google Scholar 

  25. Rice H, Suth S, Cavanaugh W, Bai J, Young-Pearse TL (2010) In utero electroporation followed by primary neuronal culture for studying gene function in subset of cortical neurons. J Vis Exp Oct 8; (44). doi: 10.3791/2103

  26. Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458:591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Charles I, Khalyfa A, Kumar DM, Krishnamoorthy RR, Roque RS, Cooper N, Agarwal N (2005) Serum deprivation induces apoptotic cell death of transformed rat retinal ganglion cells via mitochondrial signaling pathways. Invest Ophthalmol Vis Sci 46:1330–1338

    Article  PubMed  Google Scholar 

  28. Corbo JC, Deuel TA, Long JM, LaPorte P, Tsai E, Wynshaw-Boris A, Walsh CA (2002) Doublecortin is required in mice for lamination of the hippocampus but not the néocortex. J Neurosci 22:7548–7557

    CAS  PubMed  Google Scholar 

  29. Bai J, Ramos RL, Ackman JB, Thomas AM, Lee RV, LoTurco JJ (2003) RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 6:1277–1283

    Article  CAS  PubMed  Google Scholar 

  30. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lizarraga SB, Margossian SP, Harris MH, Campagna DR, Han AP, Blevins S, Mudbhary R, Barker JE, Walsh CA, Fleming MD (2010) Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 137:1907–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, Ramos C, Müller U (2012) Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337:746–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2001) Classification system for malformations of cortical development: update 2001. Neurology 57:2168–2178

    Article  CAS  PubMed  Google Scholar 

  35. Abner CW, McKinnon PJ (2004) The DNA double-strand break response in the nervous system. DNA Repair (Amst) 3:1141–1147

    Article  CAS  Google Scholar 

  36. Frank KM, Sharpless NE, Gao Y, Sekiguchi JM, Ferguson DO, Zhu C, Manis JP, Horner J, DePinho RA, Alt FW (2000) DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell 5:993–1002

    Article  CAS  PubMed  Google Scholar 

  37. Haydar TF, Kuan CY, Flavell RA, Rakic P (1999) The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb Cortex 9:621–626

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), Programme Hospitalier de Recherche Clinique (PHRC) from the French Ministry of Health and GIS Institut des Maladies Rares.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Villard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Waly, B., Buhler, E., Haddad, MR. et al. Nhej1 Deficiency Causes Abnormal Development of the Cerebral Cortex. Mol Neurobiol 52, 771–782 (2015). https://doi.org/10.1007/s12035-014-8919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8919-y

Keywords

Navigation