Skip to main content

Advertisement

Log in

Cyclic AMP-Dependent Protein Kinase Enhances SC35-Promoted Tau Exon 10 Inclusion

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alternative splicing of tau exon 10 generates tau with three or four microtubule-binding repeats (3R-tau or 4R-tau). The ratio of 3R-tau to 4R-tau is approximately 1:1 in the adult normal human brain. Disturbances in the ratio result in neurodegenerative tauopathies. Splicing factor SC35 acts on a SC35-like element located at the 5′ end of tau exon 10 and promotes tau exon 10 inclusion. Here, we report that protein kinase (PKA) was able to interact and phosphorylate SC35. Activation or overexpression of PKA catalytic subunits promoted SC35-mediated tau exon 10 inclusion. Four PKA catalytic subunits, α1, α2, β1, and β2, all enhanced SC35-promoted tau exon 10 inclusion. SC35 has four putative PKA phosphorylation sites, Ser121, Ser128, Ser130, and Ser171. Pseudophosphorylation (SC354E) and blockage (SC354A) of phosphorylation of SC35 at these four sites increased and decreased, respectively, SC35’s ability to promote tau exon 10 inclusion. Moreover, PKA catalytic subunits no longer further enhanced tau exon 10 inclusion when these four were mutated to either alanine or glutamate. These results suggest that PKA interacts with and phosphorylates SC35 and enhances SC35-promoted tau exon 10 inclusion. In Alzheimer’s brain, down-regulation of the PKA pathway could lead to dysregulation of tau exon 10, contributing to tau pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98:6923–6928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ballatore C, Hyde E, Deiches RF, Lee VM, Trojanowski JQ, Huryn D, Smith AB 3rd (2007) Paclitaxel C-10 carbamates: potential candidates for the treatment of neurodegenerative tauopathies. Bioorg Med Chem Lett 17:3642–3646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    CAS  PubMed  Google Scholar 

  4. Montejo de Garcini E, Serrano L, Avila J (1986) Self assembly of microtubule associated protein tau into filaments resembling those found in Alzheimer disease. Biochem Biophys Res Commun 141:790–796

    Article  CAS  PubMed  Google Scholar 

  5. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochemistry 31:10626–10633

    Article  CAS  PubMed  Google Scholar 

  7. Himmler A (1989) Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family. Mol Cell Biol 9:1389–1396

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079

    Article  CAS  PubMed  Google Scholar 

  9. Himmler A, Drechsel D, Kirschner MW, Martin DW Jr (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol 9:1381–1388

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Hasegawa M, Morishima-Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer’s disease brain. J Biol Chem 267:17047–17054

    CAS  PubMed  Google Scholar 

  11. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399

    CAS  PubMed  Google Scholar 

  12. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    Article  CAS  PubMed  Google Scholar 

  13. Kosik KS, Orecchio LD, Bakalis S, Neve RL (1989) Developmentally regulated expression of specific tau sequences. Neuron 2:1389–1397

    Article  CAS  PubMed  Google Scholar 

  14. D’Souza I, Schellenberg GD (2005) Regulation of tau isoform expression and dementia. Biochim Biophys Acta 1739:104–115

    Article  PubMed  Google Scholar 

  15. Goedert M, Jakes R (2005) Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 1739:240–250

    Article  CAS  PubMed  Google Scholar 

  16. Sergeant N, Delacourte A, Buee L (2005) Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta 1739:179–197

    Article  CAS  PubMed  Google Scholar 

  17. Qian W, Liang H, Shi J, Jin N, Grundke-Iqbal I, Iqbal K, Gong CX, Liu F (2011) Regulation of the alternative splicing of tau exon 10 by SC35 and Dyrk1A. Nucleic Acids Res 39:6161–6171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Birney E, Kumar S, Krainer AR (1993) Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 21:5803–5816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Shi J, Qian W, Yin X, Iqbal K, Grundke-Iqbal I, Gu X, Ding F, Gong CX, Liu F (2011) Cyclic AMP-dependent protein kinase regulates the alternative splicing of tau exon 10: a mechanism involved in tau pathology of Alzheimer disease. J Biol Chem 286:14639–14648

    Article  CAS  PubMed  Google Scholar 

  20. Gui JF, Lane WS, Fu XD (1994) A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369:678–682

    Article  CAS  PubMed  Google Scholar 

  21. Wang HY, Lin W, Dyck JA, Yeakley JM, Songyang Z, Cantley LC, Fu XD (1998) SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J Cell Biol 140:737–750

    Article  CAS  PubMed  Google Scholar 

  22. Colwill K, Pawson T, Andrews B, Prasad J, Manley JL, Bell JC, Duncan PI (1996) The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J 15:265–275

    CAS  PubMed  Google Scholar 

  23. Rossi F, Labourier E, Forne T, Divita G, Derancourt J, Riou JF, Antoine E, Cathala G, Brunel C, Tazi J (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381:80–82

    Article  CAS  PubMed  Google Scholar 

  24. Doskeland SO, Maronde E, Gjertsen BT (1993) The genetic subtypes of cAMP-dependent protein kinase—functionally different or redundant? Biochim Biophys Acta 1178:249–258

    Article  CAS  PubMed  Google Scholar 

  25. Foss KB, Simard J, Berube D, Beebe SJ, Sandberg M, Grzeschik KH, Gagne R, Hansson V, Jahnsen T (1992) Localization of the catalytic subunit C gamma of the cAMP-dependent protein kinase gene (PRKACG) to human chromosome region 9q13. Cytogenet Cell Genet 60:22–25

    Article  CAS  PubMed  Google Scholar 

  26. Liu F, Li B, Tung EJ, Grundke-Iqbal I, Iqbal K, Gong CX (2007) Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. Eur J Neurosci 26:3429–3436

    Article  PubMed Central  PubMed  Google Scholar 

  27. Liu F, Liang Z, Shi J, Yin D, El-Akkad E, Grundke-Iqbal I, Iqbal K, Gong CX (2006) PKA modulates GSK-3beta- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. FEBS Lett 580:6269–6274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I, Iqbal K, Wang JZ (2004) Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem 279:50078–50088

    Article  CAS  PubMed  Google Scholar 

  29. Shi J, Zhang T, Zhou C, Chohan MO, Gu X, Wegiel J, Zhou J, Hwang YW, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F (2008) Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome. J Biol Chem 283:28660–28669

    Article  CAS  PubMed  Google Scholar 

  30. Qian W, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F (2011) Splicing factor SC35 promotes tau expression through stabilization of its mRNA. FEBS Lett 585:875–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Townsend RR, Lipniunas PH, Tulk BM, Verkman AS (1996) Identification of protein kinase A phosphorylation sites on NBD1 and R domains of CFTR using electrospray mass spectrometry with selective phosphate ion monitoring. Protein Sci 5:1865–1873

    Article  CAS  PubMed  Google Scholar 

  32. Gasparini L, Terni B, Spillantini MG (2007) Frontotemporal dementia with tau pathology. Neurodegener Dis 4:236–253

    Article  PubMed  Google Scholar 

  33. Hernandez F, Perez M, Lucas JJ, Mata AM, Bhat R, Avila J (2004) Glycogen synthase kinase-3 plays a crucial role in tau exon 10 splicing and intranuclear distribution of SC35. Implications for Alzheimer’s disease. J Biol Chem 279:3801–3806

    Article  CAS  PubMed  Google Scholar 

  34. Cataldi A, Zingariello M, Rapino M, Zara S, Daniele F, Di Giulio C, Antonucci A (2009) Effect of hypoxia and aging on PKC delta-mediated SC-35 phosphorylation in rat myocardial tissue. Anat Rec (Hoboken) 292:1135–1142

    Article  CAS  Google Scholar 

  35. Jang SW, Liu X, Fu H, Rees H, Yepes M, Levey A, Ye K (2009) Interaction of Akt-phosphorylated SRPK2 with 14-3-3 mediates cell cycle and cell death in neurons. J Biol Chem 284:24512–24525

    Article  CAS  PubMed  Google Scholar 

  36. Taylor SS, Kim C, Cheng CY, Brown SH, Wu J, Kannan N (2008) Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim Biophys Acta 1784:16–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Liang Z, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2007) Down-regulation of cAMP-dependent protein kinase by over-activated calpain in Alzheimer disease brain. J Neurochem 103:2462–2470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hara M, Hirokawa K, Kamei S, Uchihara T (2013) Isoform transition from four-repeat to three-repeat tau underlies dendrosomatic and regional progression of neurofibrillary pathology. Acta Neuropathol 125:565–579

    Article  CAS  PubMed  Google Scholar 

  39. Espinoza M, de Silva R, Dickson DW, Davies P (2008) Differential incorporation of tau isoforms in Alzheimer’s disease. J Alzheimers Dis 14:1–16

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. J. Murphy for secretarial assistance. This work was supported in part by Nantong University and the New York State Office for People with Developmental Disabilities, and grants from the National Natural Science Foundation of China (81030059 and 30973143 to L.F.), the U.S. Alzheimer’s Association (IIRG-10-173154 to L.F.), the Basic Research Program of Jiangsu Education Department (10KJA310040 to L.F.), and the Priority Academic Program Development of Jiangsu Higher Education institutions (PAPD).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Zuo or Fei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Jin, N., Qian, W. et al. Cyclic AMP-Dependent Protein Kinase Enhances SC35-Promoted Tau Exon 10 Inclusion. Mol Neurobiol 49, 615–624 (2014). https://doi.org/10.1007/s12035-013-8542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8542-3

Keywords

Navigation