Skip to main content

Advertisement

Log in

Wnt Signaling in Skeletal Muscle Dynamics: Myogenesis, Neuromuscular Synapse and Fibrosis

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The signaling pathways activated by Wnt ligands are related to a wide range of critical cell functions, such as cell division, migration, and synaptogenesis. Here, we summarize compelling evidence on the role of Wnt signaling on several features of skeletal muscle physiology. We briefly review the role of Wnt pathways on the formation of muscle fibers during prenatal and postnatal myogenesis, highlighting its role on the activation of stem cells of the adult muscles. We also discuss how Wnt signaling regulates the precise formation of neuromuscular synapses, by modulating the differentiation of presynaptic and postsynaptic components, particularly regarding the clustering of acetylcholine receptors on the muscle membrane. In addition, based on previous evidence showing that Wnt pathways are linked to several diseases, such as Alzheimer's and cancer, we address recent studies indicating that Wnt signaling plays a key role in skeletal muscle fibrosis, a disease characterized by an increase in the extracellular matrix components leading to failure in muscle regeneration, tissue disorganization and loss of muscle activity. In this context, we also discuss the possible cross-talk between the Wnt/β-catenin pathway with two other critical profibrotic pathways, transforming growth factor β and connective tissue growth factor, which are potent stimulators of the accumulation of connective tissue, an effect characteristic of the fibrotic condition. As it has emerged in other pathological conditions, we suggests that muscle fibrosis may be a consequence of alterations of Wnt signaling activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burden SJ (1998) The formation of neuromuscular synapses. Genes Dev 12(2):133–148

    CAS  PubMed  Google Scholar 

  2. Fallon JR, Gelfman CE (1989) Agrin-related molecules are concentrated at acetylcholine receptor clusters in normal and aneural developing muscle. J Cell Biol 108(4):1527–1535

    CAS  PubMed  Google Scholar 

  3. Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113(7):841–852

    CAS  PubMed  Google Scholar 

  4. Rudnicki MA, Le Grand F, McKinnell I, Kuang S (2008) The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73:323–331

    CAS  PubMed  Google Scholar 

  5. von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA (2012) Wnt signaling in myogenesis. Trends Cell Biol 22(11):602–609

    Google Scholar 

  6. Moody-Corbett F (1986) Formation of the vertebrate neuromuscular junction. Dev Biol 2:605–635, N Y 1985

    CAS  Google Scholar 

  7. Daniels MP (1997) Intercellular communication that mediates formation of the neuromuscular junction. Mol Neurobiol 14(3):143–170

    CAS  PubMed  Google Scholar 

  8. Hughes BW, Kusner LL, Kaminski HJ (2006) Molecular architecture of the neuromuscular junction. Muscle Nerve 33(4):445–461

    CAS  PubMed  Google Scholar 

  9. Aldunate R, Casar JC, Brandan E, Inestrosa NC (2004) Structural and functional organization of synaptic acetylcholinesterase. Brain Res Brain Res Rev 47(1–3):96–104

    CAS  PubMed  Google Scholar 

  10. Park M, Shen K (2012) WNTs in synapse formation and neuronal circuitry. EMBO J 31(12):2697–2704

    CAS  PubMed  Google Scholar 

  11. Budnik V, Salinas PC (2011) Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol 21(1):151–159

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Henriquez JP, Salinas PC (2011) Dual roles for Wnt signalling during the formation of the vertebrate neuromuscular junction. Acta Physiol (Oxf). doi:10.1111/j.1748-1716.2011.02295.x

    Google Scholar 

  13. Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2(1):50–59

    CAS  PubMed  Google Scholar 

  14. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810

    CAS  PubMed  Google Scholar 

  15. Bitterman PB, Henke CA (1991) Fibroproliferative disorders. Chest 99(3 Suppl):81S–84S

    CAS  PubMed  Google Scholar 

  16. Serrano AL, Munoz-Canoves P (2010) Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 316(18):3050–3058

    CAS  PubMed  Google Scholar 

  17. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, Brenner M, Guo G, Zhang W, Oliver N, Lin A, Yeowell D (2011) Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair 4(1):4

    PubMed Central  PubMed  Google Scholar 

  18. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18(7):816–827

    CAS  PubMed  Google Scholar 

  19. Abreu JG, Ketpura NI, Reversade B, De Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol 4(8):599–604

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Nusse R, Varmus H (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 31(12):2670–2684

    CAS  PubMed  Google Scholar 

  21. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205

    CAS  PubMed  Google Scholar 

  22. Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281(32):22429–22433

    CAS  PubMed  Google Scholar 

  23. Toledo EM, Colombres M, Inestrosa NC (2008) Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol 86(3):281–296

    CAS  PubMed  Google Scholar 

  24. Wang HY, Liu T, Malbon CC (2006) Structure–function analysis of Frizzleds. Cell Signal 18(7):934–941

    CAS  PubMed  Google Scholar 

  25. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13(12):767–779

    CAS  PubMed  Google Scholar 

  26. Arrazola MS, Varela-Nallar L, Colombres M, Toledo EM, Cruzat F, Pavez L, Assar R, Aravena A, Gonzalez M, Montecino M, Maass A, Martinez S, Inestrosa NC (2009) Calcium/calmodulin-dependent protein kinase type IV is a target gene of the Wnt/beta-catenin signaling pathway. J Cell Physiol 221(3):658–667

    CAS  PubMed  Google Scholar 

  27. Hodar C, Assar R, Colombres M, Aravena A, Pavez L, Gonzalez M, Martinez S, Inestrosa NC, Maass A (2010) Genome-wide identification of new Wnt/beta-catenin target genes in the human genome using CART method. BMC genomics 11:348

    PubMed Central  PubMed  Google Scholar 

  28. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8(1):34–42

    CAS  PubMed  Google Scholar 

  29. Inestrosa NC, Montecinos-Oliva C, Fuenzalida M (2012) Wnt signaling: role in Alzheimer disease and schizophrenia. J Neuroimmune Pharmacol 7(4):788–807

    PubMed  Google Scholar 

  30. Varela-Nallar L, Alfaro IE, Serrano FG, Parodi J, Inestrosa NC (2010) Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci U S A 107(49):21164–21169

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Manceau M, Marcelle C, Gros J (2005) A common somitic origin for embryonic muscle progenitors. Med Sci (Paris) 21(11):915–917

    Google Scholar 

  32. Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435(7044):954–958

    CAS  PubMed  Google Scholar 

  33. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54(11):1177–1191

    CAS  PubMed  Google Scholar 

  34. Olguin HC, Pisconti A (2012) Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med 16(5):1013–1025

    CAS  PubMed  Google Scholar 

  35. Tsivitse S (2010) Notch and Wnt signaling, physiological stimuli and postnatal myogenesis. Int J Biol Sci 6(3):268–281

    CAS  PubMed Central  PubMed  Google Scholar 

  36. van Amerongen R, Berns A (2006) Knockout mouse models to study Wnt signal transduction. Trends Genet 22(12):678–689

    PubMed  Google Scholar 

  37. Chien AJ, Conrad WH, Moon RT (2009) A Wnt survival guide: from flies to human disease. J Invest Dermatol 129(7):1614–1627

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Vertino AM, Taylor-Jones JM, Longo KA, Bearden ED, Lane TF, McGehee RE Jr, MacDougald OA, Peterson CA (2005) Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Mol Biol Cell 16(4):2039–2048

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Miyoshi K, Rosner A, Nozawa M, Byrd C, Morgan F, Landesman-Bollag E, Xu X, Seldin DC, Schmidt EV, Taketo MM, Robinson GW, Cardiff RD, Hennighausen L (2002) Activation of different Wnt/beta-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene 21(36):5548–5556

    CAS  PubMed  Google Scholar 

  40. Munsterberg AE, Kitajewski J, Bumcrot DA, McMahon AP, Lassar AB (1995) Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 9(23):2911–2922

    CAS  PubMed  Google Scholar 

  41. Borello U, Buffa V, Sonnino C, Melchionna R, Vivarelli E, Cossu G (1999) Differential expression of the Wnt putative receptors Frizzled during mouse somitogenesis. Mech Dev 89(1–2):173–177

    CAS  PubMed  Google Scholar 

  42. Cauthen CA, Berdougo E, Sandler J, Burrus LW (2001) Comparative analysis of the expression patterns of Wnts and Frizzleds during early myogenesis in chick embryos. Mech Dev 104(1–2):133–138

    CAS  PubMed  Google Scholar 

  43. Kummer TT, Misgeld T, Sanes JR (2006) Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Curr Opin Neurobiol 16(1):74–82

    CAS  PubMed  Google Scholar 

  44. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2(11):791–805

    CAS  PubMed  Google Scholar 

  45. Wu H, Xiong WC, Mei L (2010) To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137(7):1017–1033

    CAS  PubMed  Google Scholar 

  46. Jing L, Lefebvre JL, Gordon LR, Granato M (2009) Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor. Neuron 61(5):721–733

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, Lee KF (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410(6832):1057–1064

    CAS  PubMed  Google Scholar 

  48. Vock VM, Ponomareva ON, Rimer M (2008) Evidence for muscle-dependent neuromuscular synaptic site determination in mammals. J Neurosci 28(12):3123–3130

    CAS  PubMed  Google Scholar 

  49. An MC, Lin W, Yang J, Dominguez B, Padgett D, Sugiura Y, Aryal P, Gould TW, Oppenheim RW, Hester ME, Kaspar BK, Ko CP, Lee KF (2010) Acetylcholine negatively regulates development of the neuromuscular junction through distinct cellular mechanisms. Proc Natl Acad Sci U S A 107(23):10702–10707

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Lin W, Dominguez B, Yang J, Aryal P, Brandon EP, Gage FH, Lee KF (2005) Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46(4):569–579

    CAS  PubMed  Google Scholar 

  51. Misgeld T, Kummer TT, Lichtman JW, Sanes JR (2005) Agrin promotes synaptic differentiation by counteracting an inhibitory effect of neurotransmitter. Proc Natl Acad Sci U S A 102(31):11088–11093

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85(4):525–535

    CAS  PubMed  Google Scholar 

  53. DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, DiStefano PS, Glass DJ, Burden SJ, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85(4):501–512

    CAS  PubMed  Google Scholar 

  54. Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, Gies DR, Shah S, Mattsson K, Burden SJ, DiStefano PS, Valenzuela DM, DeChiara TM, Yancopoulos GD (1996) Agrin acts via a MuSK receptor complex. Cell 85(4):513–523

    CAS  PubMed  Google Scholar 

  55. Valenzuela DM, Stitt TN, DiStefano PS, Rojas E, Mattsson K, Compton DL, Nunez L, Park JS, Stark JL, Gies DR et al (1995) Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15(3):573–584

    CAS  PubMed  Google Scholar 

  56. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML, Burden SJ (2008) Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135(2):334–342

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Weatherbee SD, Anderson KV, Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133(24):4993–5000

    CAS  PubMed  Google Scholar 

  58. Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L (2008) LRP4 serves as a coreceptor of agrin. Neuron 60(2):285–297

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Linnoila J, Wang Y, Yao Y, Wang ZZ (2008) A mammalian homolog of Drosophila tumorous imaginal discs, Tid1, mediates agrin signaling at the neuromuscular junction. Neuron 60(4):625–641

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Noakes PG, Phillips WD, Hanley TA, Sanes JR, Merlie JP (1993) 43K protein and acetylcholine receptors colocalize during the initial stages of neuromuscular synapse formation in vivo. Dev Biol 155(1):275–280

    CAS  PubMed  Google Scholar 

  61. Okada K, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T, Kubo S, Shiraishi H, Eguchi K, Motomura M, Akiyama T, Iwakura Y, Higuchi O, Yamanashi Y (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312(5781):1802–1805

    CAS  PubMed  Google Scholar 

  62. Feng G, Laskowski MB, Feldheim DA, Wang H, Lewis R, Frisen J, Flanagan JG, Sanes JR (2000) Roles for ephrins in positionally selective synaptogenesis between motor neurons and muscle fibers. Neuron 25(2):295–306

    CAS  PubMed  Google Scholar 

  63. Fox MA, Sanes JR, Borza DB, Eswarakumar VP, Fassler R, Hudson BG, John SW, Ninomiya Y, Pedchenko V, Pfaff SL, Rheault MN, Sado Y, Segal Y, Werle MJ, Umemori H (2007) Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129(1):179–193

    CAS  PubMed  Google Scholar 

  64. Yumoto N, Kim N, Burden SJ (2012) Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature 489(7416):438–442

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Henriquez JP, Webb A, Bence M, Bildsoe H, Sahores M, Hughes SM, Salinas PC (2008) Wnt signaling promotes AChR aggregation at the neuromuscular synapse in collaboration with agrin. Proc Natl Acad Sci U S A 105(48):18812–18817

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Luo ZG, Wang Q, Zhou JZ, Wang J, Luo Z, Liu M, He X, Wynshaw-Boris A, Xiong WC, Lu B, Mei L (2002) Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35(3):489–505

    CAS  PubMed  Google Scholar 

  67. Zhang J, Lefebvre JL, Zhao S, Granato M (2004) Zebrafish unplugged reveals a role for muscle-specific kinase homologs in axonal pathway choice. Nat Neurosci 7(12):1303–1309

    CAS  PubMed  Google Scholar 

  68. Strochlic L, Falk J, Goillot E, Sigoillot S, Bourgeois F, Delers P, Rouviere J, Swain A, Castellani V, Schaeffer L, Legay C (2012) Wnt4 participates in the formation of vertebrate neuromuscular junction. PLoS One 7(1):e29976

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Zhang B, Liang C, Bates R, Yin Y, Xiong WC, Mei L (2012) Wnt proteins regulate acetylcholine receptor clustering in muscle cells. Mol Brain 5:7

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Gordon LR, Gribble KD, Syrett CM, Granato M (2012) Initiation of synapse formation by Wnt-induced MuSK endocytosis. Development 139(5):1023–1033

    CAS  PubMed  Google Scholar 

  71. Henriquez JP, Krull CE, Osses N (2011) The Wnt and BMP families of signaling morphogens at the vertebrate neuromuscular junction. Int J Mol Sci 12(12):8924–8946

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Koles K, Budnik V (2012) Wnt signaling in neuromuscular junction development. Cold Spring Harb Perspect Biol 4(6)

  73. Krylova O, Herreros J, Cleverley KE, Ehler E, Henriquez JP, Hughes SM, Salinas PC (2002) WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons. Neuron 35(6):1043–1056

    CAS  PubMed  Google Scholar 

  74. Wang J, Luo ZG (2008) The role of Wnt/beta-catenin signaling in postsynaptic differentiation. Commun Integr Biol 1(2):158–160

    PubMed  Google Scholar 

  75. Wang J, Ruan NJ, Qian L, Lei WL, Chen F, Luo ZG (2008) Wnt/beta-catenin signaling suppresses Rapsyn expression and inhibits acetylcholine receptor clustering at the neuromuscular junction. J Biol Chem 283(31):21668–21675

    CAS  PubMed  Google Scholar 

  76. Li XM, Dong XP, Luo SW, Zhang B, Lee DH, Ting AK, Neiswender H, Kim CH, Carpenter-Hyland E, Gao TM, Xiong WC, Mei L (2008) Retrograde regulation of motoneuron differentiation by muscle beta-catenin. Nat Neurosci 11(3):262–268

    CAS  PubMed  Google Scholar 

  77. Liu Y, Sugiura Y, Wu F, Mi W, Taketo MM, Cannon S, Carroll T, Lin W (2012) beta-Catenin stabilization in skeletal muscles, but not in motor neurons, leads to aberrant motor innervation of the muscle during neuromuscular development in mice. Dev Biol 366(2):255–267

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Nishimura T, Kato K, Yamaguchi T, Fukata Y, Ohno S, Kaibuchi K (2004) Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol 6(4):328–334

    CAS  PubMed  Google Scholar 

  79. Shi SH, Jan LY, Jan YN (2003) Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112(1):63–75

    CAS  PubMed  Google Scholar 

  80. Rolls MM, Doe CQ (2004) Baz, Par-6 and aPKC are not required for axon or dendrite specification in Drosophila. Nat Neurosci 7(12):1293–1295

    CAS  PubMed  Google Scholar 

  81. Dickson BJ (2005) Wnts send axons up and down the spinal cord. Nat Neurosci 8(9):1130–1132

    CAS  PubMed  Google Scholar 

  82. Liu Y, Shi J, Lu CC, Wang ZB, Lyuksyutova AI, Song XJ, Zou Y (2005) Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci 8(9):1151–1159

    CAS  PubMed  Google Scholar 

  83. Hutchins BI, Li L, Kalil K (2012) Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum. Sci Signal 5(206):pt1

    PubMed  Google Scholar 

  84. Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100(5):525–535

    CAS  PubMed  Google Scholar 

  85. Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6(5):351–362

    CAS  PubMed  Google Scholar 

  86. Ahmad-Annuar A, Ciani L, Simeonidis I, Herreros J, Fredj NB, Rosso SB, Hall A, Brickley S, Salinas PC (2006) Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 174(1):127–139

    CAS  PubMed  Google Scholar 

  87. Cerpa W, Godoy JA, Alfaro I, Farias GG, Metcalfe MJ, Fuentealba R, Bonansco C, Inestrosa NC (2008) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283(9):5918–5927

    CAS  PubMed  Google Scholar 

  88. Minino AM, Arias E, Kochanek KD, Murphy SL, Smith BL (2002) Deaths: final data for 2000. Natl Vital Stat Rep 50(15):1–119

    PubMed  Google Scholar 

  89. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208(7):1339–1350

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Zhou L, Lu H (2010) Targeting fibrosis in Duchenne muscular dystrophy. J Neuropathol Exp Neurol 69(8):771–776

    PubMed Central  PubMed  Google Scholar 

  92. Liu L, Carron B, Yee HT, Yie TA, Hajjou M, Rom W (2009) Wnt pathway in pulmonary fibrosis in the bleomycin mouse model. J Environ Pathol Toxicol Oncol 28(2):99–108

    PubMed Central  PubMed  Google Scholar 

  93. Peng H, Cheng ML (2008) The relationship of metallothionein and liver fibrosis. Zhonghua Gan Zang Bing Za Zhi 16(1):78–79

    CAS  PubMed  Google Scholar 

  94. Huang C, Ogawa R (2012) Fibroproliferative disorders and their mechanobiology. Connect Tissue Res 53(3):187–196

    CAS  PubMed  Google Scholar 

  95. Serrano AL, Mann CJ, Vidal B, Ardite E, Perdiguero E, Munoz-Canoves P (2011) Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr Top Dev Biol 96:167–201

    CAS  PubMed  Google Scholar 

  96. Lagrota-Candido J, Canella I, Pinheiro DF, Santos-Silva LP, Ferreira RS, Guimaraes-Joca FJ, Lannes-Vieira J, Quirico-Santos T (2010) Characteristic pattern of skeletal muscle remodelling in different mouse strains. Int J Exp Pathol 91(6):522–529

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10(6):427–439

    CAS  PubMed  Google Scholar 

  98. Kharraz Y, Guerra J, Mann CJ, Serrano AL, Munoz-Canoves P (2013) Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediat Inflamm 2013:491497

    Google Scholar 

  99. Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298(5):R1173–R1187

    CAS  PubMed  Google Scholar 

  100. Lesault PF, Theret M, Magnan M, Cuvellier S, Niu Y, Gherardi RK, Tremblay JP, Hittinger L, Chazaud B (2012) Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle. PLoS One 7(10):e46698

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Chazaud B, Brigitte M, Yacoub-Youssef H, Arnold L, Gherardi R, Sonnet C, Lafuste P, Chretien F (2009) Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exerc Sport Sci Rev 37(1):18–22

    PubMed  Google Scholar 

  102. Lockhart NC, Brooks SV (2008) Neutrophil accumulation following passive stretches contributes to adaptations that reduce contraction-induced skeletal muscle injury in mice. J Appl Physiol 104(4):1109–1115

    PubMed  Google Scholar 

  103. Moyer AL, Wagner KR (2011) Regeneration versus fibrosis in skeletal muscle. Curr Opin Rheumatol 23(6):568–573

    PubMed  Google Scholar 

  104. Davalos D, Akassoglou K (2012) Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 34(1):43–62

    CAS  PubMed  Google Scholar 

  105. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Porter JD, Merriam AP, Leahy P, Gong B, Feuerman J, Cheng G, Khanna S (2004) Temporal gene expression profiling of dystrophin-deficient (mdx) mouse diaphragm identifies conserved and muscle group-specific mechanisms in the pathogenesis of muscular dystrophy. Hum Mol Genet 13(3):257–269

    CAS  PubMed  Google Scholar 

  107. Emery AE (2002) Muscular dystrophy into the new millennium. Neuromuscul Disord 12(4):343–349

    PubMed  Google Scholar 

  108. O'Brien KF, Kunkel LM (2001) Dystrophin and muscular dystrophy: past, present, and future. Mol Genet Metab 74(1–2):75–88

    PubMed  Google Scholar 

  109. Shin J, Tajrishi MM, Ogura Y, Kumar A (2013) Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 45(10):2266–2279. doi:10.1016/j.biocel.2013.05.001

    Google Scholar 

  110. Brandan E, Cabello-Verrugio C, Vial C (2008) Novel regulatory mechanisms for the proteoglycans decorin and biglycan during muscle formation and muscular dystrophy. Matrix biology : J Int Soc Matrix Biol 27(8):700–708

    CAS  Google Scholar 

  111. Karalaki M, Fili S, Philippou A, Koutsilieris M (2009) Muscle regeneration: cellular and molecular events. In Vivo 23 (5):779–796

    Google Scholar 

  112. Le Grand F, Rudnicki M (2007) Satellite and stem cells in muscle growth and repair. Development 134(22):3953–3957

    PubMed  Google Scholar 

  113. Scime A, Rudnicki MA (2008) Molecular-targeted therapy for Duchenne muscular dystrophy: Progress and potential. Mol Diagn Ther 12(2):99–108

    CAS  PubMed  Google Scholar 

  114. von Maltzahn J, Renaud JM, Parise G, Rudnicki MA (2012) Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci U S A 109(50):20614–20619

    Google Scholar 

  115. Morales MG, Cabello-Verrugio C, Santander C, Cabrera D, Goldschmeding R, Brandan E (2011) CTGF/CCN-2 over-expression can directly induce features of skeletal muscle dystrophy. J Pathol 225(4):490–501

    CAS  PubMed  Google Scholar 

  116. Vial C, Gutierrez J, Santander C, Cabrera D, Brandan E (2011) Decorin interacts with connective tissue growth factor (CTGF)/CCN2 by LRR12 inhibiting its biological activity. J Biol Chem 286(27):24242–24252

    CAS  PubMed  Google Scholar 

  117. Cabello-Verrugio C, Santander C, Cofre C, Acuna MJ, Melo F, Brandan E (2012) The internal region leucine-rich repeat 6 of decorin interacts with low density lipoprotein receptor-related protein-1, modulates transforming growth factor (TGF)-beta-dependent signaling, and inhibits TGF-beta-dependent fibrotic response in skeletal muscles. J Biol Chem 287(9):6773–6787

    CAS  PubMed  Google Scholar 

  118. Qi W, Chen X, Twigg S, Zhang Y, Gilbert RE, Kelly DJ, Pollock CA (2007) The differential regulation of Smad7 in kidney tubule cells by connective tissue growth factor and transforming growth factor-beta1. Nephrology (Carlton) 12(3):267–274

    CAS  Google Scholar 

  119. Wahab NA, Weston BS, Mason RM (2005) Modulation of the TGFbeta/Smad signaling pathway in mesangial cells by CTGF/CCN2. Exp Cell Res 307(2):305–314

    PubMed  Google Scholar 

  120. Cabello-Verrugio C, Cordova G, Vial C, Zuniga LM, Brandan E (2011) Connective tissue growth factor induction by lysophosphatidic acid requires transactivation of transforming growth factor type beta receptors and the JNK pathway. Cell Signal 23(2):449–457

    CAS  PubMed  Google Scholar 

  121. Vial C, Zuniga LM, Cabello-Verrugio C, Canon P, Fadic R, Brandan E (2008) Skeletal muscle cells express the profibrotic cytokine connective tissue growth factor (CTGF/CCN2), which induces their dedifferentiation. J Cell Physiol 215(2):410–421

    CAS  PubMed  Google Scholar 

  122. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630

    CAS  PubMed  Google Scholar 

  123. Akhurst RJ, Hata A (2012) Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 11(10):790–811

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    CAS  PubMed  Google Scholar 

  125. Zhou L, Porter JD, Cheng G, Gong B, Hatala DA, Merriam AP, Zhou X, Rafael JA, Kaminski HJ (2006) Temporal and spatial mRNA expression patterns of TGF-beta1, 2, 3 and TbetaRI, II, III in skeletal muscles of mdx mice. Neuromuscul Disord 16(1):32–38

    PubMed  Google Scholar 

  126. Massague J, Cheifetz S, Endo T, Nadal-Ginard B (1986) Type beta transforming growth factor is an inhibitor of myogenic differentiation. Proc Natl Acad Sci U S A 83(21):8206–8210

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Like B, Massague J (1986) The antiproliferative effect of type beta transforming growth factor occurs at a level distal from receptors for growth-activating factors. J Biol Chem 261(29):13426–13429

    CAS  PubMed  Google Scholar 

  128. Attisano L, Labbe E (2004) TGFbeta and Wnt pathway cross-talk. Cancer Metastasis Rev 23(1–2):53–61

    CAS  PubMed  Google Scholar 

  129. Mezzano V, Cabrera D, Vial C, Brandan E (2007) Constitutively activated dystrophic muscle fibroblasts show a paradoxical response to TGF-beta and CTGF/CCN2. J Cell Commun Signal 1(3–4):205–217

    PubMed Central  PubMed  Google Scholar 

  130. Zhu J, Li Y, Shen W, Qiao C, Ambrosio F, Lavasani M, Nozaki M, Branca MF, Huard J (2007) Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J Biol Chem 282(35):25852–25863

    CAS  PubMed  Google Scholar 

  131. Cheon SS, Wei Q, Gurung A, Youn A, Bright T, Poon R, Whetstone H, Guha A, Alman BA (2006) Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing. FASEB J 20(6):692–701

    CAS  PubMed  Google Scholar 

  132. Eger A, Stockinger A, Park J, Langkopf E, Mikula M, Gotzmann J, Mikulits W, Beug H, Foisner R (2004) beta-Catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 23(15):2672–2680

    CAS  PubMed  Google Scholar 

  133. Dao DY, Yang X, Chen D, Zuscik M, O'Keefe RJ (2007) Axin1 and Axin2 are regulated by TGF- and mediate cross-talk between TGF- and Wnt signaling pathways. Ann N Y Acad Sci 1116:82–99

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Shi-Wen X, Leask A, Abraham D (2008) Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev 19(2):133–144

    PubMed  Google Scholar 

  135. Brigstock DR (2002) Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5(3):153–165

    CAS  PubMed  Google Scholar 

  136. Bork P (1993) The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 327(2):125–130

    CAS  PubMed  Google Scholar 

  137. Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. International J Biochem Cell biol 41(4):771–783

    CAS  Google Scholar 

  138. Yoshida K, Munakata H (2007) Connective tissue growth factor binds to fibronectin through the type I repeat modules and enhances the affinity of fibronectin to fibrin. Biochimica et biophysica acta 1770(4):672–680

    CAS  PubMed  Google Scholar 

  139. Wahab NA, Weston BS, Mason RM (2005) Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol : JASN 16(2):340–351

    CAS  PubMed  Google Scholar 

  140. Minamizato T, Sakamoto K, Liu T, Kokubo H, Katsube K, Perbal B, Nakamura S, Yamaguchi A (2007) CCN3/NOV inhibits BMP-2-induced osteoblast differentiation by interacting with BMP and Notch signaling pathways. Biochem Biophys Res Commun 354(2):567–573

    CAS  PubMed  Google Scholar 

  141. Passerini L, Bernasconi P, Baggi F, Confalonieri P, Cozzi F, Cornelio F, Mantegazza R (2002) Fibrogenic cytokines and extent of fibrosis in muscle of dogs with X-linked golden retriever muscular dystrophy. Neuromuscul Disord 12(9):828–835

    PubMed  Google Scholar 

  142. Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K (1999) Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J Cell Physiol 181(1):153–159

    CAS  PubMed  Google Scholar 

  143. Frazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR (1996) Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 107(3):404–411

    CAS  PubMed  Google Scholar 

  144. Surmann-Schmitt C, Sasaki T, Hattori T, Eitzinger N, Schett G, von der Mark K, Stock M (2012) The Wnt antagonist Wif-1 interacts with CTGF and inhibits CTGF activity. J Cell Physiol 227(5):2207–2216

    CAS  PubMed  Google Scholar 

  145. Rooney B, O'Donovan H, Gaffney A, Browne M, Faherty N, Curran SP, Sadlier D, Godson C, Brazil DP, Crean J (2011) CTGF/CCN2 activates canonical Wnt signalling in mesangial cells through LRP6: Implications for the pathogenesis of diabetic nephropathy. FEBS Lett 585(3):531–538

    CAS  PubMed  Google Scholar 

  146. Mercurio S, Latinkic B, Itasaki N, Krumlauf R, Smith JC (2004) Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development 131(9):2137–2147

    CAS  PubMed  Google Scholar 

  147. Chen S, McLean S, Carter DE, Leask A (2007) The gene expression profile induced by Wnt 3a in NIH 3T3 fibroblasts. J Cell Commun Signal 1(3–4):175–183

    PubMed Central  PubMed  Google Scholar 

  148. Bentzinger CF, von Maltzahn J, Rudnicki MA (2010) Extrinsic regulation of satellite cell specification. Stem Cell Res Ther 1(3):27

    PubMed Central  PubMed  Google Scholar 

  149. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18(7):1028–1040

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Sampson N, Berger P, Zenzmaier C (2012) Therapeutic targeting of redox signaling in myofibroblast differentiation and age-related fibrotic disease. Oxidative Med Cell Longev 2012:458276

    Google Scholar 

  151. Hu B, Phan SH (2013) Myofibroblasts. Curr Opin Rheumatol 25(1):71–77

    CAS  PubMed  Google Scholar 

  152. Phan SH (2008) Biology of fibroblasts and myofibroblasts. Proc Am Thorac Soc 5(3):334–337

    PubMed Central  PubMed  Google Scholar 

  153. Si W, Kang Q, Luu HH, Park JK, Luo Q, Song WX, Jiang W, Luo X, Li X, Yin H, Montag AG, Haydon RC, He TC (2006) CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol 26(8):2955–2964

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA, Kahn M (2010) Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 107(32):14309–14314

    PubMed Central  PubMed  Google Scholar 

  155. Masiakowski P, Yancopoulos GD (1998) The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr Biol 8(12):R407

    CAS  PubMed  Google Scholar 

  156. Cerpa W, Gambrill A, Inestrosa NC, Barria A (2011) Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci 31(26):9466–9471

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Farias GG, Alfaro IE, Cerpa W, Grabowski CP, Godoy JA, Bonansco C, Inestrosa NC (2009) Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J Biol Chem 284(23):15857–15866

    CAS  PubMed  Google Scholar 

  158. Ren S, Johnson BG, Kida Y, Ip C, Davidson KC, Lin SL, Kobayashi A, Lang RA, Hadjantonakis AK, Moon RT, Duffield JS (2013) LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc Natl Acad Sci U S A 110(4):1440–1445

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K, Tsukamoto H (2008) Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 294(1):G39–G49

    CAS  PubMed  Google Scholar 

  160. Gauger KJ, Chenausky KL, Murray ME, Schneider SS (2011) SFRP1 reduction results in an increased sensitivity to TGF-beta signaling. BMC cancer 11:59

    CAS  PubMed Central  PubMed  Google Scholar 

  161. He W, Zhang L, Ni A, Zhang Z, Mirotsou M, Mao L, Pratt RE, Dzau VJ (2010) Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci U S A 107(49):21110–21115

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Beyer C, Reichert H, Akan H, Mallano T, Schramm A, Dees C, Palumbo-Zerr K, Lin NY, Distler A, Gelse K, Varga J, Distler O, Schett G, Distler JH (2013) Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann Rheum Dis 72(7):1255–1258

    CAS  PubMed  Google Scholar 

  163. Distler A, Deloch L, Huang J, Dees C, Lin NY, Palumbo-Zerr K, Beyer C, Weidemann A, Distler O, Schett G, Distler JH (2013) Inactivation of tankyrases reduces experimental fibrosis by inhibiting canonical Wnt signalling. Ann Rheum Dis 72:1575–1580

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Basal Center of Excellence in Aging and Regeneration (CONICYT-PFB 12/2007) and FONDECYT (no. 1120156 to N.C.I. and no. 1130321 to J.P.H.). PC was a postdoctoral fellow from the PFB (12/2007) grant to NCI and EB. Graphic work was carried out by Graphique-Science (http://graphique-science.blogspot.com).

Conflicts of Interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibaldo C. Inestrosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cisternas, P., Henriquez, J.P., Brandan, E. et al. Wnt Signaling in Skeletal Muscle Dynamics: Myogenesis, Neuromuscular Synapse and Fibrosis. Mol Neurobiol 49, 574–589 (2014). https://doi.org/10.1007/s12035-013-8540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8540-5

Keywords

Navigation