Skip to main content
Log in

Nigral GFRα1 Infusion in Aged Rats Increases Locomotor Activity, Nigral Tyrosine Hydroxylase, and Dopamine Content in Synchronicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) increases locomotor activity in rodent models of aging and Parkinson’s disease in conjunction with increased dopamine (DA) tissue content in substantia nigra (SN). Striatal GDNF infusion also increases expression of GDNF’s cognate receptor, GFRα1, and tyrosine hydroxylase (TH) ser31 phosphorylation in the SN of aged rats long after elevated GDNF is no longer detectable. In aging, expression of soluble GFRα1 in the SN decreases in association with decreased TH expression, TH ser31 phosphorylation, DA tissue content, and locomotor activity. Thus, we hypothesized that, in aged rats, replenishing soluble GFRα1 in SN could reverse these deficits and increase locomotor activity. We determined that the quantity of soluble GFRα1 in young adult rat SN is ~3.6 ng. To replenish age-related loss, which is ~30 %, we infused 1 ng soluble GFRα1 bilaterally into SN of aged male rats and observed increased locomotor activity compared to vehicle-infused rats up to 4 days following infusion, with maximal effects on day 3. Five days after infusion, however, neither locomotor activity nor nigrostriatal neurochemical measures were significantly different between groups. In a separate cohort of male rats, nigral, but not striatal, DA, TH, and TH ser31 phosphorylation were increased 3 days following unilateral infusion of 1 ng soluble GFRα1into SN. Therefore, in aged male rats, the transient increase in locomotor activity induced by replenishing age-related loss of soluble GFRα1is temporally matched with increased nigral dopaminergic function. Thus, expression of soluble GFRα1 in SN may be a key component in locomotor activity regulation through its influence over TH regulation and DA biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Granholm AC, Reyland M, Albeck D (2000) Glial cell line-derived neurotrophic factor is essential for postnatal survival of midbrain dopamine neurons. J Neurosci 20:3182–3190

    PubMed  CAS  Google Scholar 

  2. Pascual A, Hidalgo-Figueroa M, Piruat JI et al (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11:755–761

    Article  PubMed  CAS  Google Scholar 

  3. Nevalainen N, Chermenina M, Rehnmark A et al (2010) Glial cell line-derived neurotrophic factor is crucial for long-term maintenance of the nigrostriatal system. Neuroscience 171:1357–1366

    Article  PubMed  CAS  Google Scholar 

  4. Boger HA, Middaugh LD, Huang P et al (2006) A partial GDNF depletion leads to earlier age-related deterioration of motor function and tyrosine hydroxylase expression in the substantia nigra. Exp Neurol 202:336–347

    Article  PubMed  CAS  Google Scholar 

  5. Boger HA, Middaugh LD, Zaman V et al (2008) Differential effects of the dopamine neurotoxin MPTP in animals with a partial deletion of the GDNF receptor, GFR alpha1, gene. Brain Res 1241:18–28

    Article  PubMed  CAS  Google Scholar 

  6. Zaman V, Boger HA, Granholm AC et al (2008) The nigrostriatal dopamine system of aging GFRalpha-1 heterozygous mice: neurochemistry, morphology and behavior. Eur J Neurosci 28:1557–1568

    Article  PubMed  Google Scholar 

  7. Hudson J, Granholm AC, Gerhardt GA et al (1995) Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res Bull 36:425–432

    Article  PubMed  CAS  Google Scholar 

  8. Bowenkamp KE, Lapchak PA, Hoffer BJ, Bickford PC (1996) Glial cell line-derived neurotrophic factor reverses motor impairment in 16–17 month old rats. Neurosci Lett 211:81–84

    Article  PubMed  CAS  Google Scholar 

  9. Hebert MA, Gerhardt GA (1997) Behavioral and neurochemical effects of intranigral administration of glial cell line-derived neurotrophic factor on aged Fischer 344 rats. J Pharmacol Exp Ther 282:760–768

    PubMed  CAS  Google Scholar 

  10. Maswood N, Grondin R, Zhang Z et al (2002) Effects of chronic intraputamenal infusion of glial cell line-derived neurotrophic factor (GDNF) in aged Rhesus monkeys. Neurobiol Aging 23:881–889

    Article  PubMed  CAS  Google Scholar 

  11. Grondin R, Cass WA, Zhang Z et al (2003) Glial cell line-derived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J Neurosci 23:1974–1980

    PubMed  CAS  Google Scholar 

  12. Hoffer BJ, Hoffman AF, Bowencamp KE et al (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett 182:107–111

    Article  PubMed  CAS  Google Scholar 

  13. Gash DM, Zhang Z, Ovadia A et al (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255

    Article  PubMed  CAS  Google Scholar 

  14. Aoi M, Date I, Tomita S, Ohmoto T (2000) The effect of intrastriatal single injection of GDNF on the nigrostriatal dopaminergic system in hemiparkinsonian rats: behavioral and histological studies using two different dosages. Neurosci Res 36:319–325

    Article  PubMed  CAS  Google Scholar 

  15. Connor B, Kozlowski DA, Unnerstall JR et al (2001) Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects dopaminergic terminals from degeneration. Exp Neurol 169:83–95

    Article  PubMed  CAS  Google Scholar 

  16. Grondin R, Zhang Z, Ai Y et al (2002) Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125:2191–2201

    Article  PubMed  Google Scholar 

  17. Gill SS, Patel NK, Hotton GR et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595

    Article  PubMed  CAS  Google Scholar 

  18. Slevin JT, Gerhardt GA, Smith CD et al (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102:216–222

    Article  PubMed  CAS  Google Scholar 

  19. Georgievska B, Kirik D, Bjorklund A (2004) Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time- and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system. J Neurosci 24:6437–6445

    Article  PubMed  CAS  Google Scholar 

  20. Salvatore MF, Zhang JL, Large DM et al (2004) Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. J Neurochem 90:245–254

    Article  PubMed  CAS  Google Scholar 

  21. Salvatore MF, Gerhardt GA, Dayton RD, Klein RL, Stanford JA (2009) Bilateral effects of unilateral GDNF administration on dopamine- and GABA-regulating proteins in the rat nigrostriatal system. Exp Neurol 219:197–207

    Article  PubMed  CAS  Google Scholar 

  22. Gerhardt GA, Cass WA, Huettl P et al (1999) GDNF improves dopamine function in the substantia nigra but not the putamen of unilateral MPTP-lesioned rhesus monkeys. Brain Res 817:163–171

    Article  PubMed  CAS  Google Scholar 

  23. Trevitt JT, Carlson BB, Nowend K, Salamone JD (2004) Substantia nigra pars reticulata is a highly potent site of action for the behavioral effects of the D1 antagonist SCH23390 in the rat. Psychopharmacology 156:32–41

    Google Scholar 

  24. Bergquist F, Shahabi HN, Nissbrandt H (2003) Somatodendritic dopamine release in rat substantia nigra influences motor performance on the accelerating rod. Brain Res 973:81–91

    Article  PubMed  CAS  Google Scholar 

  25. Andersson DR, Nissbrandt H, Bergquist F (2006) Partial depletion of dopamine in substantia nigra impairs motor performance without altering striatal dopamine neurotransmission. Eur J Neurosci 24:617–624

    Article  PubMed  Google Scholar 

  26. Salvatore MF, Pruett BS, Spann SL, Dempsey C (2009) Aging reveals a role for nigral tyrosine hydroxylase ser31 phosphorylation in locomotor activity generation. PLoS One 4:8466

    Article  Google Scholar 

  27. Lang AE, Gill SS, Patel NK et al (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson's disease. Ann Neurol 59:459–466

    Article  PubMed  CAS  Google Scholar 

  28. Decressac M, Ulusoy A, Mattson B et al (2011) GDNF fails to exert neuroprotection in a rat a-synuclein model of Parkinson's disease. Brain 134:2302–2311

    Article  PubMed  Google Scholar 

  29. Jing S, Wen D, Yu Y et al (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85:1113–1124

    Article  PubMed  CAS  Google Scholar 

  30. Treanor JJ, Goodman L, de Sauvage F et al (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83

    Article  PubMed  CAS  Google Scholar 

  31. Mijatovic J, Airavaara M, Planken A et al (2007) Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra. J Neurosci 18:4799–4809

    Article  Google Scholar 

  32. Sariola H, Saarma M (2003) Novel functions and signaling pathways for GDNF. J Cell Sci 116:3855–3862

    Article  PubMed  CAS  Google Scholar 

  33. Tomac AC, Widenfalk J, Lin LFH et al (1995) Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc Natl Acad Sci A 92:8274–8278

    Article  CAS  Google Scholar 

  34. Tomac AC, Grinberg A, Huang SP et al (2000) Gial cell line-derived neurotrophic factor receptor α1 availability regulates glial cell line-derived neurotrophic factor signaling: evidence from mice carrying one or two mutated alles. Neuroscience 95:1011–1023

    Article  PubMed  CAS  Google Scholar 

  35. Matsuo A, Nakamura S, Akiguchi I (2000) Immunohistochemical localization of glial cell line-derived neurotrophic factor family receptor α-1 in the rat brain: confirmation of expression in various neuronal systems. Brain Res 859:57–71

    Article  PubMed  CAS  Google Scholar 

  36. Paratcha G, Ledda F, Baars L et al (2001) Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron 29:171–184

    Article  PubMed  CAS  Google Scholar 

  37. Pruett BS, Salvatore MF (2010) GFR alpha-1 receptor expression in the aging nigrostriatal and mesoaccumbens pathways. J Neurochem 115:707–715

    Article  PubMed  CAS  Google Scholar 

  38. Salvatore MF, Pruett BS, Dempsey C, Fields V (2012) Comprehensive profiling of dopamine regulation in substantia nigra and ventral tegmental area. JOVE (66), e4171, DOI: 10.3791/4171

  39. Salvatore MF, Pruett BS (2012) Dichotomy of tyrosine hydroxylase and dopamine regulation between somatodendritic and terminal field areas of nigrostriatal and mesoaccumbens pathways. PLoS One 7(1):29867

    Article  Google Scholar 

  40. Haycock JW, Ahn NG, Cobb MH, Krebs EG (1992) ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci A 89:2365–2369

    Article  CAS  Google Scholar 

  41. Trupp M, Scott R, Whittemore SR, Ibanez CF (1999) Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J Biol Chem 274:20885–20894

    Article  PubMed  CAS  Google Scholar 

  42. Besset V, Scott RP, Ibanez CF (2000) Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 275:39159–39166

    Article  PubMed  CAS  Google Scholar 

  43. Salvatore MF, Waymire JC, Haycock JW (2001) Depolarization-stimulated catecholamine biosynthesis: involvement of protein kinases and tyrosine hydroxylase phosphorylation sites in situ. J Neurochem 79:349–360

    Article  PubMed  CAS  Google Scholar 

  44. Salvatore MF, Davis RW, Arnold JC, Chotibut T (2012) Transient striatal GLT-1 blockade increases EAAC1 expression, glutamate reuptake, and decreases tyrosine hydroxylase phosphorylation at ser(19). Exp Neurol 234:428–436

    Article  PubMed  CAS  Google Scholar 

  45. Wang C-Y, Yang F, He X et al (2001) Ca2+ binding protein frequenin mediates GDNF-induced potentiation of Ca2+ channels and transmitter release. Neuron 32:99–112

    Article  PubMed  Google Scholar 

  46. Rosenblad C, Georgievska B, Kirik D (2003) Long-term striatal overexpression of GNDF selectively downregulates tyrosine hydroxylase in the intact nigrostriatal dopamine system. Eur J Neurosci 17:260–270

    Article  PubMed  Google Scholar 

  47. Haycock JW, Becker L, Ang L et al (2003) Marked disparity between age-related changes in dopamine and other presynaptic dopaminergic markers in human striatum. J Neurochem 87:574–585

    Article  PubMed  CAS  Google Scholar 

  48. Salvatore MF, Ai Y, Fischer B et al (2006) Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol 202:497–505

    Article  PubMed  CAS  Google Scholar 

  49. Lei Z, Jiang Y, Li T et al (2011) Signaling of glial cell line-derived neurotrophic factor and its receptor GFRalpha1 induce Nurr1 and Pitx3 to promote survival of grafted midbrain-derived neural stem cells in a rat model of Parkinson disease. J Neuropathol Exp Neurol 70:736–747

    Article  PubMed  CAS  Google Scholar 

  50. Collier TJ, Ling ZD, Carvey PM et al (2005) Striatal trophic factor activity in aging monkeys with unilateral MPTP-induced parkinsonism. Exp Neurol 191(Suppl 1):S60–S67

    Article  PubMed  CAS  Google Scholar 

  51. Dass B, Kladis T, Chu Y, Kordower JH (2006) RET expression does not change with age in the substantia nigra pars compacta of rhesus monkeys. Neurobiol Aging 27:857–861

    Article  PubMed  CAS  Google Scholar 

  52. Alladi PA, Mahadevan A, Shankar SK et al (2010) Expression of GDNF receptors GFRalpha1 and RET is preserved in substantia nigra pars compacta of aging Asian Indians. J Chem Neuroanat 40:43–52

    Article  PubMed  CAS  Google Scholar 

  53. Bennett DA, Beckett LA, Murray AM et al (1996) Prevalence of parkinsonian signs and associated mortality in a community population of older people. N Engl J Med 334:71–76

    Article  PubMed  CAS  Google Scholar 

  54. Prettyman R (1998) Extrapyramidal signs in cognitively intact elderly people. Age Ageing 27:557–560

    Article  PubMed  CAS  Google Scholar 

  55. Bartus RT, Brown L, Wilson A et al (2011) Properly scaled and targeted AAV2-NRTN (neurturin) to the substantia nigra is safe, effective and causes no weight loss: support for nigral targeting in Parkinson's disease. Neurobiol Dis 44:38–52

    Article  PubMed  CAS  Google Scholar 

  56. Sarabi A, Hoffer BJ, Olson L, Morales M (2001) GFRalpha-1 mRNA in dopaminergic and nondopaminergic neurons in the substantia nigra and ventral tegmental area. J Comp Neurol 441:106–117

    Article  PubMed  CAS  Google Scholar 

  57. Franke B, Figiel M, Engele J (1998) CNS glia are targets for GDNF and neurturin. Histochem Cell Biol 110:595–601

    Article  PubMed  CAS  Google Scholar 

  58. Remy S, Naveilhan P, Brachet P, Neveu I (2001) Differential regulation of GDNF, neurturin, and their receptors in primary cultures of rat glial cells. J Neurosci Res 64:242–251

    Article  PubMed  CAS  Google Scholar 

  59. Honda S, Nakajima K, Nakamura Y et al (1999) Rat primary cultured microglia express glial cell line-derived neurotrophic factor receptors. Neurosci Lett 275:203–206

    Article  PubMed  CAS  Google Scholar 

  60. Salvatore MF (2012) Targeting tyrosine hydroxylase to improve bradykinesia. In: Dushanova J (ed) Mechanisms in Parkinson’s disease—models and treatments. InTech http://www.intechopen.com/books/mechanisms-in-parkinson-s-disease-models-and-treatments/targeting-tyrosine-hydroxylase-to-improve-bradykinesia

Download references

Acknowledgments

This work was funded in part by an NIH grant award to MFS, 1R01AG040261-01A1, and The Ike Muslow Predoctoral Fellowship to BSP. The authors also wish to thank Victoria Fields and Charles Dempsey for outstanding technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Salvatore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruett, B.S., Salvatore, M.F. Nigral GFRα1 Infusion in Aged Rats Increases Locomotor Activity, Nigral Tyrosine Hydroxylase, and Dopamine Content in Synchronicity. Mol Neurobiol 47, 988–999 (2013). https://doi.org/10.1007/s12035-013-8397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8397-7

Keywords

Navigation