Skip to main content

Advertisement

Log in

Basic Biology and Mechanisms of Neural Ciliogenesis and the B9 Family

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although the discovery of cilia is one of the earliest in cell biology, the past two decades have witnessed an explosion of new insight into these enigmatic organelles. While long believed to be vestigial, cilia have recently moved into the spotlight as key players in multiple cellular processes, including brain development and homeostasis. This review focuses on the rapidly expanding basic biology of neural cilia, with special emphasis on the newly emerging B9 family of proteins. In particular, recent findings have identified a critical role for the B9 complex in a network of protein interactions that take place at the ciliary transition zone (TZ). We describe the essential role of these protein complexes in signaling cascades that require primary (nonmotile) cilia, including the sonic hedgehog pathway. Loss or dysfunction of ciliary trafficking and TZ function are linked to a number of neurologic diseases, which we propose to classify as neural ciliopathies. When taken together, the studies reviewed herein point to critical roles played by neural cilia, both in normal physiology and in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dobell C, van Leeuwenhoek A (1958) Antony van Leeuwenhoek and his “Little animals”: being some account of the father of protozoology and bacteriology and his multifarious discoveries in these disciplines. Russell & Russell, New York

    Google Scholar 

  2. Haimo LT, Rosenbaum JL (1981) Cilia, flagella, and microtubules. J Cell Biol 91(3 Pt 2):125s–130s

    Article  PubMed  CAS  Google Scholar 

  3. Satir P (1995) Landmarks in cilia research from Leeuwenhoek to us. Cell Motil Cytoskeleton 32(2):90–94

    Article  PubMed  CAS  Google Scholar 

  4. Zimmerman KW (1898) Beitrage zur kenntniss einiger drusen und epithelien. Archiv for Mikrosk Anat 52:552–706

    Article  Google Scholar 

  5. Dellinger OP (1909) The cilium as a key to the structure of contractile protoplasm. J Morphol 20:171–209

    Article  Google Scholar 

  6. Grave C, Schmitt FO (1924) A Mechanism for the coordination and regulation of the movement of cilia of epithelia. Science 60(1550):246–248

    Article  PubMed  CAS  Google Scholar 

  7. Jakus MA, Hall CE (1946) Electron microscope observations of the trichocysts and cilia of Paramecium. Biol Bull 91(02):141–144

    Article  PubMed  CAS  Google Scholar 

  8. Dahl HA (1963) Fine structure of cilia in rat cerebral cortex. Z Zellforsch Mikrosk Anat 60:369–386

    Article  PubMed  CAS  Google Scholar 

  9. Karlsson U (1966) Three-dimensional studies of neurons in the lateral geniculate nucleus of the rat. I. Organelle organization in the perikaryon and its proximal branches. J Ultrastruct Res 16(5):429–481

    Article  PubMed  CAS  Google Scholar 

  10. Louvi A, Grove EA (2011) Cilia in the CNS: the quiet organelle claims center stage. Neuron 69(6):1046–1060

    Article  PubMed  CAS  Google Scholar 

  11. Kozminski KG, Johnson KA et al (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 90(12):5519–5523

    Article  PubMed  CAS  Google Scholar 

  12. Kozminski KG, Beech PL et al (1995) The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 131(6 Pt 1):1517–1527

    Article  PubMed  CAS  Google Scholar 

  13. Perkins LA, Hedgecock EM et al (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 117(2):456–487

    Article  PubMed  CAS  Google Scholar 

  14. Cole DG, Diener DR et al (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141(4):993–1008

    Article  PubMed  CAS  Google Scholar 

  15. Collet J, Spike CA et al (1998) Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Genetics 148(1):187–200

    PubMed  CAS  Google Scholar 

  16. Signor D, Wedaman KP et al (1999) Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 147(3):519–530

    Article  PubMed  CAS  Google Scholar 

  17. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3(11):813–825

    Article  PubMed  CAS  Google Scholar 

  18. Pazour GJ, Dickert BL et al (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151(3):709–718

    Article  PubMed  CAS  Google Scholar 

  19. Rohatgi R, Milenkovic L et al (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317(5836):372–376

    Article  PubMed  CAS  Google Scholar 

  20. Milenkovic L, Scott MP et al (2009) Lateral transport of smoothened from the plasma membrane to the membrane of the cilium. J Cell Biol 187(3):365–374

    Article  PubMed  CAS  Google Scholar 

  21. Huangfu D, Liu A et al (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426(6962):83–87

    Article  PubMed  CAS  Google Scholar 

  22. Huangfu D, Anderson KV (2005) Cilia and hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102(32):11325–11330

    Article  PubMed  CAS  Google Scholar 

  23. May SR, Ashique AM et al (2005) Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287(2):378–389

    Article  PubMed  CAS  Google Scholar 

  24. Tuson M, He M et al (2011) Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development 138(22):4921–4930

    Article  PubMed  CAS  Google Scholar 

  25. Delattre M, Briand S et al (1999) The suppressor of fused gene, involved in Hedgehog signal transduction in Drosophila, is conserved in mammals. Dev Genes Evol 209(5):294–300

    Article  PubMed  CAS  Google Scholar 

  26. Ding Q, Fukami S et al (1999) Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1. Curr Biol 9(19):1119–1122

    Article  PubMed  CAS  Google Scholar 

  27. Kogerman P, Grimm T et al (1999) Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1(5):312–319

    Article  PubMed  CAS  Google Scholar 

  28. Pearse RV 2nd, Collier LS et al (1999) Vertebrate homologs of Drosophila suppressor of fused interact with the gli family of transcriptional regulators. Dev Biol 212(2):323–336

    Article  PubMed  CAS  Google Scholar 

  29. Stone DM, Murone M et al (1999) Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J Cell Sci 112(Pt 23):4437–4448

    PubMed  CAS  Google Scholar 

  30. Cooper AF, Yu KP et al (2005) Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development 132(19):4407–4417

    Article  PubMed  CAS  Google Scholar 

  31. Svard J, Heby-Henricson K et al (2006) Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian hedgehog signaling pathway. Dev Cell 10(2):187–197

    Article  PubMed  Google Scholar 

  32. Jia J, Kolterud A et al (2009) Suppressor of fused inhibits mammalian hedgehog signaling in the absence of cilia. Dev Biol 330(2):452–460

    Article  PubMed  CAS  Google Scholar 

  33. Haycraft CJ, Banizs B et al (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1(4):e53

    Article  PubMed  Google Scholar 

  34. Tukachinsky H, Lopez LV et al (2010) A mechanism for vertebrate hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol 191(2):415–428

    Article  PubMed  CAS  Google Scholar 

  35. Zeng H, Jia J et al (2010) Coordinated translocation of mammalian Gli proteins and suppressor of fused to the primary cilium. PLoS One 5(12):e15900

    Article  PubMed  CAS  Google Scholar 

  36. Chen MH, Wilson CW et al (2009) Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 23(16):1910–1928

    Article  PubMed  CAS  Google Scholar 

  37. Humke EW, Dorn KV et al (2010) The output of hedgehog signaling is controlled by the dynamic association between suppressor of fused and the Gli proteins. Genes Dev 24(7):670–682

    Article  PubMed  CAS  Google Scholar 

  38. Hu Q, Milenkovic L et al (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329(5990):436–439

    Article  PubMed  CAS  Google Scholar 

  39. Seeley ES, Nachury MV (2010) The perennial organelle: assembly and disassembly of the primary cilium. J Cell Sci 123(Pt 4):511–518

    Article  PubMed  CAS  Google Scholar 

  40. Hu Q, Nelson WJ (2011) Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment. Cytoskeleton (Hoboken) 68(6):313–324

    CAS  Google Scholar 

  41. Town T, Breunig JJ et al (2008) The stumpy gene is required for mammalian ciliogenesis. Proc Natl Acad Sci USA 105(8):2853–2858

    Article  PubMed  CAS  Google Scholar 

  42. Garcia-Gonzalo FR, Corbit KC et al (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet 43(8):776–784

    Article  PubMed  CAS  Google Scholar 

  43. Williams CL, Li C et al (2011) MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 192(6):1023–1041

    Article  PubMed  CAS  Google Scholar 

  44. Chih B, Liu P et al (2012) A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol 14(1):61–72

    Article  CAS  Google Scholar 

  45. Zhang D, Aravind L (2010) Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene 469(1–2):18–30

    Article  PubMed  CAS  Google Scholar 

  46. Williams CL, Winkelbauer ME et al (2008) Functional redundancy of the B9 proteins and nephrocystins in Caenorhabditis elegans ciliogenesis. Mol Biol Cell 19(5):2154–2168

    Article  PubMed  CAS  Google Scholar 

  47. Dowdle WE, Robinson JF et al (2011) Disruption of a ciliary B9 protein complex causes Meckel syndrome. Am J Hum Genet 89(1):94–110

    Article  PubMed  CAS  Google Scholar 

  48. Breunig JJ, Sarkisian MR et al (2008) Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci USA 105(35):13127–13132

    Article  PubMed  CAS  Google Scholar 

  49. Chizhikov VV, Davenport J et al (2007) Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci 27(36):9780–9789

    Article  PubMed  CAS  Google Scholar 

  50. Spassky N, Han YG et al (2008) Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 317(1):246–259

    Article  PubMed  CAS  Google Scholar 

  51. Gherman A, Davis EE et al (2006) The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 38(9):961–962

    Article  PubMed  CAS  Google Scholar 

  52. Kyttala M, Tallila J et al (2006) MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet 38(2):155–157

    Article  PubMed  Google Scholar 

  53. Weatherbee SD, Niswander LA et al (2009) A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and hedgehog signaling. Hum Mol Genet 18(23):4565–4575

    Article  PubMed  CAS  Google Scholar 

  54. Breunig JJ, Haydar TF et al (2011) Neural stem cells: historical perspective and future prospects. Neuron 70(4):614–625

    Article  PubMed  CAS  Google Scholar 

  55. Guillemot F (2007) Cell fate specification in the mammalian telencephalon. Prog Neurobiol 83(1):37–52

    Article  PubMed  CAS  Google Scholar 

  56. Han YG, Spassky N et al (2008) Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci 11(3):277–284

    Article  PubMed  CAS  Google Scholar 

  57. Altman J, Bayer SA (1990) Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 301(3):365–381

    Article  PubMed  CAS  Google Scholar 

  58. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  PubMed  CAS  Google Scholar 

  59. Kumamoto N, Gu Y et al (2012) A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci 15:399–405

    Google Scholar 

  60. Badano JL, Mitsuma N et al (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  PubMed  CAS  Google Scholar 

  61. Adams M, Smith UM et al (2008) Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J Med Genet 45(5):257–267

    Article  PubMed  CAS  Google Scholar 

  62. Gerdes JM, Davis EE et al (2009) The vertebrate primary cilium in development, homeostasis, and disease. Cell 137(1):32–45

    Article  PubMed  CAS  Google Scholar 

  63. Fliegauf M, Benzing T et al (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8(11):880–893

    Article  PubMed  CAS  Google Scholar 

  64. Budny B, Chen W et al (2006) A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet 120(2):171–178

    Article  PubMed  CAS  Google Scholar 

  65. Martinez-Campos M, Basto R et al (2004) The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. J Cell Biol 165(5):673–683

    Article  PubMed  CAS  Google Scholar 

  66. Rauch A, Thiel CT et al (2008) Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 319(5864):816–819

    Article  PubMed  CAS  Google Scholar 

  67. Bishop GA, Berbari NF et al (2007) Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 505(5):562–571

    Article  PubMed  Google Scholar 

  68. Arellano JI, Guadiana SM et al (2012) Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol 520(4):848–873

    Article  PubMed  CAS  Google Scholar 

  69. Wallace FM (2008) Chapter 1 basal bodies: platforms for building cilia. In: Bradley KY (ed) Current topics in developmental biology, vol 85. Academic, Burlington, pp 1–22

    Google Scholar 

  70. Pan J, Snell W (2007) The primary cilium: keeper of the key to cell division. Cell 129(7):1255–1257

    Article  PubMed  CAS  Google Scholar 

  71. Wang X, Tsai JW et al (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461(7266):947–955

    Article  PubMed  CAS  Google Scholar 

  72. Han YG, Kim HJ et al (2009) Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 15(9):1062–1065

    Article  PubMed  CAS  Google Scholar 

  73. Pietsch T, Waha A et al (1997) Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 57(11):2085–2088

    PubMed  CAS  Google Scholar 

  74. Raffel C, Jenkins RB et al (1997) Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57(5):842–845

    PubMed  CAS  Google Scholar 

  75. Gilbertson RJ, Ellison DW (2008) The origins of medulloblastoma subtypes. Annu Rev Pathol 3:341–365

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Margaret E. Early Medical Research Trust (to T. T.). We are also grateful for support from the Shapell Guerin Family Foundation and the Smidt Family Foundation (to M. D.), which helped make this work possible. We thank Dr. Pasko Rakic (Yale University School of Medicine) for helpful discussion and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua J. Breunig or Terrence Town.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gate, D., Danielpour, M., Levy, R. et al. Basic Biology and Mechanisms of Neural Ciliogenesis and the B9 Family. Mol Neurobiol 45, 564–570 (2012). https://doi.org/10.1007/s12035-012-8276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8276-7

Keywords

Navigation