Skip to main content

Advertisement

Log in

Nuclear Factor One Transcription Factors in CNS Development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Transcription factors are key regulators of central nervous system (CNS) development and brain function. Research in this area has now uncovered a new key player–the nuclear factor one (NFI) gene family. It has been almost a decade since the phenotype of the null mouse mutant for the nuclear factor one A transcription factor was reported. Nfia null mice display a striking brain phenotype including agenesis of the corpus callosum and malformation of midline glial populations needed to guide axons of the corpus callosum across the midline of the developing brain. Besides NFIA, there are three other NFI family members in vertebrates: NFIB, NFIC, and NFIX. Since generation of the Nfia knockout (KO) mice, KO mice for all other family members have been generated, and defects in one or more organ systems have been identified for all four NFI family members (collectively referred to as NFI here). Like the Nfia KO mice, the Nfib and Nfix KO mice also display a brain phenotype, with the Nfib KO forebrain phenotype being remarkably similar to that of Nfia. Over the past few years, studies have highlighted NFI as a key payer in a variety of CNS processes including axonal outgrowth and guidance and glial and neuronal cell differentiation. Here, we discuss the importance and role of NFI in these processes in the context of several CNS systems including the neocortex, hippocampus, cerebellum, and spinal cord at both cellular and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci U S A 79(21):6438–6442

    Article  PubMed  CAS  Google Scholar 

  2. Nagata K, Guggenheimer RA, Hurwitz J (1983) Specific binding of a cellular DNA replication protein to the origin of replication of adenovirus DNA. Proc Natl Acad Sci U S A 80(20):6177–6181

    Article  PubMed  CAS  Google Scholar 

  3. Kruse U, Sippel AE (1994) Transcription factor nuclear factor I proteins form stable homo- and heterodimers. FEBS Lett 348(1):46–50

    Article  PubMed  CAS  Google Scholar 

  4. Gronostajski RM, Adhya S, Nagata K, Guggenheimer RA, Hurwitz J (1985) Site-specific DNA binding of nuclear factor I: analyses of cellular binding sites. Mol Cell Biol 5(5):964–971

    PubMed  CAS  Google Scholar 

  5. Leegwater PA, van Driel W, van der Vliet PC (1985) Recognition site of nuclear factor I, a sequence-specific DNA-binding protein from HeLa cells that stimulates adenovirus DNA replication. Embo J. 4(6):1515–1521

    PubMed  CAS  Google Scholar 

  6. Gronostajski RM (1986) Analysis of nuclear factor I binding to DNA using degenerate oligonucleotides. Nucleic Acids Res 14(22):9117–9132

    Article  PubMed  CAS  Google Scholar 

  7. Gronostajski RM (1987) Site-specific DNA binding of nuclear factor I: effect of the spacer region. Nucleic Acids Res 15(14):5545–5559

    Article  PubMed  CAS  Google Scholar 

  8. Meisterernst M, Gander I, Rogge L, Winnacker EL (1988) A quantitative analysis of nuclear factor I/DNA interactions. Nucleic Acids Res 16(10):4419–4435

    Article  PubMed  CAS  Google Scholar 

  9. Fletcher CF, Jenkins NA, Copeland NG, Chaudhry AZ, Gronostajski RM (1999) Exon structure of the nuclear factor I DNA-binding domain from C. elegans to mammals. Mamm Genome 10(4):390–396

    Article  PubMed  CAS  Google Scholar 

  10. Gronostajski RM (2000) Roles of the NFI/CTF gene family in transcription and development. Gene 249(1–2):31–45

    Article  PubMed  CAS  Google Scholar 

  11. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99(26):16899–16903

    Article  PubMed  Google Scholar 

  12. Kruse U, Qian F, Sippel AE (1991) Identification of a fourth nuclear factor I gene in chicken by cDNA cloning: NFI-X. Nucleic Acids Res 19(23):6641

    Article  PubMed  CAS  Google Scholar 

  13. Rupp RA, Kruse U, Multhaup G, Gobel U, Beyreuther K, Sippel AE (1990) Chicken NFI/TGGCA proteins are encoded by at least three independent genes: NFI-A, NFI-B and NFI-C with homologues in mammalian genomes. Nucleic Acids Res 18(9):2607–2616

    Article  PubMed  CAS  Google Scholar 

  14. Puzianowska-Kuznicka M, Shi YB (1996) Nuclear factor I as a potential regulator during postembryonic organ development. J Biol Chem 271(11):6273–6282

    Article  PubMed  CAS  Google Scholar 

  15. Roulet E, Armentero MT, Krey G, Corthesy B, Dreyer C, Mermod N, Wahli W (1995) Regulation of the DNA-binding and transcriptional activities of Xenopus laevis NFI-X by a novel C-terminal domain. Mol Cell Biol 15(10):5552–5562

    PubMed  CAS  Google Scholar 

  16. Apt D, Liu Y, Bernard HU (1994) Cloning and functional analysis of spliced isoforms of human nuclear factor I-X: interference with transcriptional activation by NFI/CTF in a cell-type specific manner. Nucleic Acids Res. 22(19):3825–3833

    Article  PubMed  CAS  Google Scholar 

  17. Kulkarni S, Gronostajski RM (1996) Altered expression of the developmentally regulated NFI gene family during phorbol ester-induced differentiation of human leukemic cells. Cell Growth Differ 7(4):501–510

    PubMed  CAS  Google Scholar 

  18. Mermod N, O’Neill EA, Kelly TJ, Tjian R (1989) The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58(4):741–753

    Article  PubMed  CAS  Google Scholar 

  19. Bandyopadhyay S, Gronostajski RM (1994) Identification of a conserved oxidation-sensitive cysteine residue in the NFI family of DNA-binding proteins. J Biol Chem 269(47):29949–29955

    PubMed  CAS  Google Scholar 

  20. Bandyopadhyay S, Starke DW, Mieyal JJ, Gronostajski RM (1998) Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I. J Biol Chem 273(1):392–397

    Article  PubMed  CAS  Google Scholar 

  21. Chaudhry AZ, Lyons GE, Gronostajski RM (1997) Expression patterns of the four nuclear factor I genes during mouse embryogenesis indicate a potential role in development. Dev Dyn 208(3):313–325

    Article  PubMed  CAS  Google Scholar 

  22. Chaudhry AZ, Vitullo AD, Gronostajski RM (1999) Nuclear factor I-mediated repression of the mouse mammary tumor virus promoter is abrogated by the coactivators p300/CBP and SRC-1. J Biol Chem 274(11):7072–7081

    Article  PubMed  CAS  Google Scholar 

  23. Santoro C, Mermod N, Andrews PC, Tjian R (1988) A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature. 334(6179):218–224

    Article  PubMed  CAS  Google Scholar 

  24. Grunder A, Qian F, Ebel TT, Mincheva A, Lichter P, Kruse U, Sippel AE (2003) Genomic organization, splice products and mouse chromosomal localization of genes for transcription factor Nuclear Factor One. Gene 304:171–181

    Article  PubMed  CAS  Google Scholar 

  25. Kruse U, Sippel AE (1994) The genes for transcription factor nuclear factor I give rise to corresponding splice variants between vertebrate species. J Mol Biol 238(5):860–865

    Article  PubMed  CAS  Google Scholar 

  26. Wang W, Stock RE, Gronostajski RM, Wong YW, Schachner M, Kilpatrick DL (2004) A role for nuclear factor I in the intrinsic control of cerebellar granule neuron gene expression. J Biol Chem 279(51):53491–53497

    Article  PubMed  CAS  Google Scholar 

  27. Meisterernst M, Rogge L, Foeckler R, Karaghiosoff M, Winnacker EL (1989) Structural and functional organization of a porcine gene coding for nuclear factor I. Biochemistry 28(20):8191–8200

    Article  PubMed  CAS  Google Scholar 

  28. Kane R, Murtagh J, Finlay D, Marti A, Jaggi R, Blatchford D, Wilde C, Martin F (2002) Transcription factor NFIC undergoes N-glycosylation during early mammary gland involution. J Biol Chem 277(29):25893–25903

    Article  PubMed  CAS  Google Scholar 

  29. Mukhopadhyay SS, Rosen JM (2007) The C-terminal domain of the nuclear factor I-B2 isoform is glycosylated and transactivates the WAP gene in the JEG-3 cells. Biochem Biophys Res Commun 358(3):770–776

    Article  PubMed  CAS  Google Scholar 

  30. Kawamura H, Nagata K, Masamune Y, Nakanishi Y (1993) Phosphorylation of NF-I in vitro by cdc2 kinase. Biochem Biophys Res Commun 192(3):1424–1431

    Article  PubMed  CAS  Google Scholar 

  31. Bisgrove DA, Monckton EA, Packer M, Godbout R (2000) Regulation of brain fatty acid-binding protein expression by differential phosphorylation of nuclear factor I in malignant glioma cell lines. J Biol Chem 275(39):30668–30676

    Article  PubMed  CAS  Google Scholar 

  32. Nilsson J, Bjursell G, Kannius-Janson M (2006) Nuclear Jak2 and transcription factor NF1-C2: a novel mechanism of prolactin signaling in mammary epithelial cells. Mol Cell Biol 26(15):5663–5674

    Article  PubMed  CAS  Google Scholar 

  33. Campbell CE, Piper M, Plachez C, Yeh YT, Baizer JS, Osinski JM, Litwack ED, Richards LJ, Gronostajski RM (2008) The transcription factor Nfix is essential for normal brain development. BMC Dev Biol 8:52

    Article  PubMed  Google Scholar 

  34. das Neves L, Duchala CS, Tolentino-Silva F, Haxhiu MA, Colmenares C, Macklin WB, Campbell CE, Butz KG, Gronostajski RM (1999) Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc Natl Acad Sci U S A 96(21):11946–11951

    Article  PubMed  CAS  Google Scholar 

  35. Driller K, Pagenstecher A, Uhl M, Omran H, Berlis A, Grunder A, Sippel AE (2007) Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol 27(10):3855–3867

    Article  PubMed  CAS  Google Scholar 

  36. Shu T, Butz KG, Plachez C, Gronostajski RM, Richards LJ (2003) Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice. J Neurosci 23(1):203–212

    PubMed  CAS  Google Scholar 

  37. Steele-Perkins G, Plachez C, Butz KG, Yang G, Bachurski CJ, Kinsman SL, Litwack ED, Richards LJ, Gronostajski RM (2005) The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 25(2):685–698

    Article  PubMed  CAS  Google Scholar 

  38. Lu W, Quintero-Rivera F, Fan Y, Alkuraya FS, Donovan DJ, Xi Q, Turbe-Doan A, Li QG, Campbell CG, Shanske AL, Sherr EH, Ahmad A, Peters R, Rilliet B, Parvex P, Bassuk AG, Harris DJ, Ferguson H, Kelly C, Walsh CA, Gronostajski RM, Devriendt K, Higgins A, Ligon AH, Quade BJ, Morton CC, Gusella JF, Maas RL (2007) NFIA haploinsufficiency is associated with a CNS malformation syndrome and urinary tract defects. PLoS Genet 3(5):e80

    Article  PubMed  Google Scholar 

  39. Steele-Perkins G, Butz KG, Lyons GE, Zeichner-David M, Kim HJ, Cho MI, Gronostajski RM (2003) Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol 23(3):1075–1084

    Article  PubMed  CAS  Google Scholar 

  40. Park JC, Herr Y, Kim HJ, Gronostajski RM, Cho MI (2007) Nfic gene disruption inhibits differentiation of odontoblasts responsible for root formation and results in formation of short and abnormal roots in mice. J Periodontol 78(9):1795–1802

    Article  PubMed  Google Scholar 

  41. Plachez C, Lindwall C, Sunn N, Piper M, Moldrich RX, Campbell CE, Osinski JM, Gronostajski R, Richards LJ (2008) Nuclear factor I gene expression in the developing forebrain. J Comp Neurol 508(3):385–401

    Article  PubMed  CAS  Google Scholar 

  42. Wang W, Mullikin-Kilpatrick D, Crandall JE, Gronostajski RM, Litwack ED, Kilpatrick DL (2007) Nuclear factor I coordinates multiple phases of cerebellar granule cell development via regulation of cell adhesion molecules. J Neurosci 27(23):6115–61127

    Article  PubMed  CAS  Google Scholar 

  43. Shu T, Richards LJ (2001) Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 21(8):2749–2758

    PubMed  CAS  Google Scholar 

  44. Shu T, Li Y, Keller A, Richards LJ (2003) The glial sling is a migratory population of developing neurons. Development 130(13):2929–2937

    Article  PubMed  CAS  Google Scholar 

  45. Silver J, Lorenz SE, Wahlsten D, Coughlin J (1982) Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210(1):10–29

    Article  PubMed  CAS  Google Scholar 

  46. Barry G, Piper M, Lindwall C, Moldrich RX, Mason S, Little E, Sarkar A, Tole S, Gronostajski R, Richards LJ (2008) Specific glial populations regulate hippocampal morphogenesis. J Neuroosci 28(47):12328–12340

    Google Scholar 

  47. Rickmann M, Amaral DG, Cowan WM (1987) Organization of radial glial cells during the development of the rat dentate gyrus. J Comp Neurol 264(4):449–479

    Article  PubMed  CAS  Google Scholar 

  48. Sievers J, Hartmann D, Pehlemann FW, Berry M (1992) Development of astroglial cells in the proliferative matrices, the granule cell layer, and the hippocampal fissure of the hamster dentate gyrus. J Comp Neurol 320(1):1–32

    Article  PubMed  CAS  Google Scholar 

  49. Deneen B, Ho R, Lukaszewicz A, Hochstim CJ, Gronostajski RM, Anderson DJ (2006) The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52(6):953–968

    Article  PubMed  CAS  Google Scholar 

  50. Holm PC, Mader MT, Haubst N, Wizenmann A, Sigvardsson M, Gotz M (2007) Loss- and gain-of-function analyses reveal targets of Pax6 in the developing mouse telencephalon. Mol Cell Neurosci 34(1):99–119

    Article  PubMed  CAS  Google Scholar 

  51. Gotz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21(5):1031–1044

    Article  PubMed  CAS  Google Scholar 

  52. Gangemi RM, Daga A, Muzio L, Marubbi D, Cocozza S, Perera M, Verardo S, Bordo D, Griffero F, Capra MC, Mallamaci A, Corte G (2006) Effects of Emx2 inactivation on the gene expression profile of neural precursors. Eur J Neurosci 23(2):325–334

    Article  PubMed  Google Scholar 

  53. Heins N, Cremisi F, Malatesta P, Gangemi RM, Corte G, Price J, Goudreau G, Gruss P, Gotz M (2001) Emx2 promotes symmetric cell divisions and a multipotential fate in precursors from the cerebral cortex. Mol Cell Neurosci 18(5):485–502

    Article  PubMed  CAS  Google Scholar 

  54. Pellegrini M, Mansouri A, Simeone A, Boncinelli E, Gruss P (1996) Dentate gyrus formation requires Emx2. Development 122(12):3893–3898

    PubMed  CAS  Google Scholar 

  55. Mattar P, Britz O, Johannes C, Nieto M, Ma L, Rebeyka A, Klenin N, Polleux F, Guillemot F, Schuurmans C (2004) A screen for downstream effectors of Neurogenin2 in the embryonic neocortex. Dev Biol 273(2):373–389

    Article  PubMed  CAS  Google Scholar 

  56. Schuurmans C, Armant O, Nieto M, Stenman JM, Britz O, Klenin N, Brown C, Langevin LM, Seibt J, Tang H, Cunningham JM, Dyck R, Walsh C, Campbell K, Polleux F, Guillemot F (2004) Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. Embo J 23(14):2892–2902

    Article  PubMed  CAS  Google Scholar 

  57. Wong YW, Schulze C, Streichert T, Gronostajski RM, Schachner M, Tilling T (2007) Gene expression analysis of nuclear factor I-A deficient mice indicates delayed brain maturation. Genome Biol. 8(5):R72

    Article  PubMed  Google Scholar 

  58. Elder GA, Liang Z, Snyder SE, Lazzarini RA (1992) Multiple nuclear factors interact with the promoter of the human neurofilament M gene. Brain Res Mol Brain Res 15(1–2):99–107

    Article  PubMed  CAS  Google Scholar 

  59. Tamura T, Miura M, Ikenaka K, Mikoshiba K (1988) Analysis of transcription control elements of the mouse myelin basic protein gene in HeLa cell extracts: demonstration of a strong NFI-binding motif in the upstream region. Nucleic Acids Res 16(24):11441–11459

    Article  PubMed  CAS  Google Scholar 

  60. Miura M, Tamura T, Mikoshiba K (1990) Cell-specific expression of the mouse glial fibrillary acidic protein gene: identification of the cis- and trans-acting promoter elements for astrocyte-specific expression. J Neurochem. 55(4):1180–1188

    Article  PubMed  CAS  Google Scholar 

  61. Cebolla B, Vallejo M (2006) Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J Neurochem 97(4):1057–1070

    Article  PubMed  CAS  Google Scholar 

  62. Ren T, Anderson A, Shen WB, Huang H, Plachez C, Zhang J, Mori S, Kinsman SL, Richards LJ (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec A Discov Mol Cell Evol Biol 288(2):191–204

    PubMed  Google Scholar 

  63. Kralovics R, Guan Y, Prchal JT (2002) Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 30(3):229–236

    Article  PubMed  CAS  Google Scholar 

  64. Italiano A, Ebran N, Attias R, Chevallier A, Monticelli I, Mainguene C, Benchimol D, Pedeutour F (2008) NFIB rearrangement in superficial, retroperitoneal, and colonic lipomas with aberrations involving chromosome band 9p22. Genes Chromosomes Cancer 47(11):971–977

    Article  PubMed  CAS  Google Scholar 

  65. Yang ZQ, Imoto I, Pimkhaokham A, Shimada Y, Sasaki K, Oka M, Inazawa J (2001) A novel amplicon at 9p23–24 in squamous cell carcinoma of the esophagus that lies proximal to GASC1 and harbors NFIB. Jpn J Cancer Res 92(4):423–428

    PubMed  CAS  Google Scholar 

  66. Han W, Jung EM, Cho J, Lee JW, Hwang KT, Yang SJ, Kang JJ, Bae JY, Jeon YK, Park IA, Nicolau M, Jeffrey SS, Noh DY (2008) DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Genes Chromosomes Cancer 47(6):490–499

    Article  PubMed  CAS  Google Scholar 

  67. Geurts JM, Schoenmakers EF, Roijer E, Astrom AK, Stenman G, van de Ven WJ (1998) Identification of NFIB as recurrent translocation partner gene of HMGIC in pleomorphic adenomas. Oncogene 16(7):865–872

    Article  PubMed  CAS  Google Scholar 

  68. Scrideli CA, Carlotti CG Jr, Okamoto OK, Andrade VS, Cortez MA, Motta FJ, Lucio-Eterovic AK, Neder L, Rosemberg S, Oba-Shinjo SM, Marie SK, Tone LG (2008) Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR. J Neurooncol 88(3):281–291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Guy Barry and Ms Erica Little for comments on the manuscript. This work was funded by a National Health and Medical Research Council (NHMRC) project grant (LJR) and a Clive and Vera Ramaciotti grant (MP). LJR is supported by a NHMRC Senior Research Fellowship, SM is supported by a University of Queensland F.G Meade PhD Scholarship, and MP is supported by a NHMRC Howard Florey Centenary Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Richards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, S., Piper, M., Gronostajski, R.M. et al. Nuclear Factor One Transcription Factors in CNS Development. Mol Neurobiol 39, 10–23 (2009). https://doi.org/10.1007/s12035-008-8048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-008-8048-6

Keywords

Navigation