Skip to main content

Advertisement

Log in

Neurobiology of Stress-Induced Reproductive Dysfunction in Female Macaques

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It is now well accepted that stress can precipitate mental and physical illness. However, it is becoming clear that given the same stress, some individuals are very vulnerable and will succumb to illness while others are more resilient and cope effectively, rather than becoming ill. This difference between individuals is called stress sensitivity. Stress sensitivity of an individual appears to be influenced by genetically inherited factors, early life (even prenatal) stress, and by the presence or absence of factors that provide protection from stress. In comparison to other stress-related diseases, the concept of sensitivity versus resilience to stress-induced reproductive dysfunction has received relatively little attention. The studies presented herein were undertaken to begin to identify stable characteristics and the neural underpinnings of individuals with sensitivity to stress-induced reproductive dysfunction. Female cynomolgus macaques with normal menstrual cycles either stop ovulating (stress sensitive) or to continue to ovulate (stress resilient) upon exposure to a combined metabolic and psychosocial stress. However, even in the absence of stress, the stress-sensitive animals have lower secretion of the ovarian steroids, estrogen and progesterone, have higher heart rates, have lower serotonin function, have fewer serotonin neurons and lower expression of pivotal serotonin-related genes, have lower expression of 5HT2A and 2C genes in the hypothalamus, have higher gene expression of GAD67 and CRH in the hypothalamus, and have reduced gonadotropin-releasing hormone transport to the anterior pituitary. Altogether, the results suggest that the neurobiology of reproductive circuits in stress-sensitive individuals is compromised. We speculate that with the application of stress, the dysfunction of these neural systems becomes exacerbated and reproductive function ceases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. McEwen BS (2002) The end of stress as we know it. Joseph Henry, Washington, DC

    Google Scholar 

  2. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185

    Article  PubMed  CAS  Google Scholar 

  3. Cameron JL (2000) Reproductive dysfunction in primates, behaviorally induced. In: Fink G (ed) Encyclopedia of stress. Academic, New York, pp 366–372

    Google Scholar 

  4. Champlin AK (1971) Suppression of oestrus in grouped mice: the effects of various densities and the possible nature of the stimulus. J Reprod Fertil 27:233–241

    PubMed  CAS  Google Scholar 

  5. Gos T, Becker K, Bock J, Malecki U, Bogerts B, Poeggel G, Braun K (2006) Early neonatal and postweaning social emotional deprivation interferes with the maturation of serotonergic and tyrosine hydroxylase-immunoreactive afferent fiber systems in the rodent nucleus accumbens, hippocampus and amygdala. Neuroscience 140:811–821

    Article  PubMed  CAS  Google Scholar 

  6. Kajantie E (2006) Fetal origins of stress-related adult disease. Ann N Y Acad Sci 1083:11–27

    Article  PubMed  CAS  Google Scholar 

  7. Fumagalli F, Molteni R, Racagni G, Riva MA (2007) Stress during development: impact on neuroplasticity and relevance to psychopathology. Prog Neurobiol 81:197–217

    Article  PubMed  Google Scholar 

  8. Li XF, Bowe JE, Lightman SL, O’Byrne KT (2005) Role of corticotropin-releasing factor receptor-2 in stress-induced suppression of pulsatile lutenizing hormone secretion in the rat. Endocrinology 146:318–322

    Article  PubMed  CAS  Google Scholar 

  9. Ruggiero DA, Underwood MD, Rice PM, Mann JJ, Arango V (1999) Corticotropic-releasing hormone and serotonin interact in the human brainstem: behavioral implications. Neuroscience 91:1343–1354

    Article  PubMed  CAS  Google Scholar 

  10. Pernar L, Curtis AL, Vale WW, Rivier JE, Valentino RJ (2004) Selective activation of corticotropin-releasing factor-2 receptors on neurochemically identified neurons in the rat dorsal raphe nucleus reveals dual actions. J Neurosci 24:1305–1311

    Article  PubMed  CAS  Google Scholar 

  11. Clark MS, McDevitt RA, Hoplight BJ, Neumaier JF (2007) Chronic low dose ovine corticotropin releasing factor or urocortin II into the rostral dorsal raphe alters exploratory behavior and serotonergic gene expression in specific subregions of the dorsal raphe. Neuroscience 146:1888–1905

    Article  PubMed  CAS  Google Scholar 

  12. Mo B, Feng N, Renner K, Forster G (2008) Restraint stress increases serotonin release in the central nucleus of the amygdala via activation of corticotropin-releasing factor receptors. Brain Res Bull 76:493–498

    Article  PubMed  CAS  Google Scholar 

  13. Mitchell JC, Li XF, Breen L, Thalabard JC, O’Byrne KT (2005) The role of the locus coeruleus in corticotropin-releasing hormone and stress-induced suppression of pulsatile luteinizing hormone secretion in the female rat. Endocrinology 146:323–331

    Article  PubMed  CAS  Google Scholar 

  14. Dunn AJ, Swiergiel AH (2008) The role of corticotropin-releasing factor and noradrenaline in stress-related responses, and the inter-relationships between the two systems. Eur J Pharmacol 583:186–193

    Article  PubMed  CAS  Google Scholar 

  15. MacLusky NJ, Naftolin F, Leranth C (1988) Immunocytochemical evidence for direct synaptic connections between corticotrophin-releasing factor (CRF) and gonadotropin-releasing hormone (GnRH)-containing neurons in the preoptic area of the rat. Brain Res 439:391–395

    Article  PubMed  CAS  Google Scholar 

  16. Dobson H, Ghuman S, Prabhakar S, Smith R (2003) A conceptual model of the influence of stress on female reproduction. Reproduction 125:151–163

    Article  PubMed  CAS  Google Scholar 

  17. Dobson H, Smith RF (2000) What is stress, and how does it affect reproduction? Anim Reprod Sci 60–61:743–752

    Article  PubMed  Google Scholar 

  18. Tilbrook AJ, Turner AI, Clarke IJ (2002) Stress and reproduction: central mechanisms and sex differences in non-rodent species. Stress 5:83–100

    Article  PubMed  CAS  Google Scholar 

  19. Smith RF, Ghuman SP, Evans NP, Karsch FJ, Dobson H (2003) Stress and the control of LH secretion in the ewe. Reprod Suppl 61:267–282

    PubMed  CAS  Google Scholar 

  20. von Borell E, Dobson H, Prunier A (2007) Stress, behaviour and reproductive performance in female cattle and pigs. Horm Behav 52:130–138

    Article  CAS  Google Scholar 

  21. Arena B, Maffulli N, Maffulli F, Morleo MA (1995) Reproductive hormones and menstrual changes with exercise in female athletes. Sports Med 19:278–287

    PubMed  CAS  Google Scholar 

  22. De Souza MJ, Miller BE, Loucks AB, Luciano AA, Pescatello LS, Campbell CG, Lasley BL (1998) High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal–follicular transition. J Clin Endocrinol Metab 83:4220–4232

    Article  PubMed  Google Scholar 

  23. Berga SL, Girton LG (1989) The psychoneuroendocrinology of functional hypothalamic amenorrhea. Psychiatr Clin North Am 12:105–116

    PubMed  CAS  Google Scholar 

  24. Berga SL, Daniels TL, Giles DE (1997) Women with functional hypothalamic amenorrhea but not other forms of anovulation display amplified cortisol concentrations. Fertil Steril 67:1024–1030

    Article  PubMed  CAS  Google Scholar 

  25. Marcus MD, Loucks TL, Berga SL (2001) Psychological correlates of functional hypothalamic amenorrhea. Fertil Steril 76:310–316

    Article  PubMed  CAS  Google Scholar 

  26. Warren MP, Voussoughian F, Geer EB, Hyle EP, Adberg CL, Ramos RH (1999) Functional hypothalamic amenorrhea: hypoleptinemia and disordered eating. J Clin Endocrinol Metab 84:873–877

    Article  PubMed  CAS  Google Scholar 

  27. Berga SL, Marcus MD, Loucks TL, Hlastala S, Ringham R, Krohn MA (2003) Recovery of ovarian activity in women with functional hypothalamic amenorrhea who were treated with cognitive behavior therapy. Fertil Steril 80:976–981

    Article  PubMed  Google Scholar 

  28. Xiao E, Xia-Zhang L, Barth A, Zhu J, Ferin M (1998) Stress and the menstrual cycle: relevance of cycle quality in the short- and long-term response to a 5-day endotoxin challenge during the follicular phase in the rhesus monkey. J Clin Endocrinol Metab 83:2454–2460

    Article  PubMed  CAS  Google Scholar 

  29. Xiao E, Xia-Zhang L, Ferin M (1999) Stress and the menstrual cycle: short- and long-term response to a five-day endotoxin challenge during the luteal phase in the rhesus monkey. J Clin Endocrinol Metab 84:623–626

    Article  PubMed  CAS  Google Scholar 

  30. Feng YJ, Shalts E, Xia LN, Rivier J, Rivier C, Vale W, Ferin M (1991) An inhibitory effects of interleukin-1a on basal gonadotropin release in the ovariectomized rhesus monkey: reversal by a corticotropin-releasing factor antagonist. Endocrinology 128:2077–2082

    PubMed  CAS  Google Scholar 

  31. Ferin M (1995) The antireproductive role of corticotropin releasing hormone and interleukin-1 in the female rhesus monkey. Ann Endocrinol (Paris) 56:181–186

    CAS  Google Scholar 

  32. Xiao EN, Ferin M (1988) The inhibitory action of corticotropin-releasing hormone on gonadotropin secretion in the ovariectomized rhesus monkey is not mediated by adrenocorticotropic hormone. Biol Reprod 38:763–767

    Article  PubMed  CAS  Google Scholar 

  33. Williams NI, Caston-Balderrama AL, Helmreich DL, Parfitt DB, Nosbisch C, Cameron JL (2001a) Longitudinal changes in reproductive hormones and menstrual cyclicity in cynomolgus monkeys during strenuous exercise training: abrupt transition to exercise-induced amenorrhea. Endocrinology 142:2381–2389

    Article  PubMed  CAS  Google Scholar 

  34. Williams NI, Helmreich DL, Parfitt DB, Caston-Balderrama A, Cameron JL (2001b) Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab 86:5184–5193

    Article  PubMed  CAS  Google Scholar 

  35. Cameron JL, Nosbisch C (1991) Suppression of pulsatile luteinizing hormone and testosterone secretion during short term food restriction in the adult male rhesus monkey (Macaca mulatta). Endocrinology 128:1532–1540

    PubMed  CAS  Google Scholar 

  36. Cameron JL, Bridges MW, Graham RE, Bench L, Berga SL, Matthews K (1998) Basal heart rate predicts development of reproductive dysfunction in response to psychological stress. 80th Annual Meeting of the Endocrine Society, P1-76

  37. Williams NI, Berga SL, Cameron JL (1997) Mild metabolic stress potentiates the suppressive effect of psychological stress on reproductive function in female cynomolgus monkeys. 79th Annual Meeting of the Endocrine Society, P1-367

  38. Williams NI, Berga SL, Cameron JL (2007) Synergism between psychosocial and metabolic stressors: impact on reproductive function in cynomolgus monkeys. Am J Physiol Endocrinol Metab 293:E270–E276

    Article  PubMed  CAS  Google Scholar 

  39. Xiao E, Xia-Zhang L, Thornell D, Shalts E, Ferin M (1996) The luteinizing hormone but not the cortisol response to arginine vasopressin is prevented by naloxone and a corticotropin-releasing hormone antagonist in the ovariectomized rhesus monkey. Neuroendocrinology 64:225–232

    Article  PubMed  CAS  Google Scholar 

  40. Gindoff PR, Ferin M (1987) Endogenous opioid peptides modulate the effect of corticotropin-releasing factor on gonadotropin release in the primate. Endocrinology 121:837–842

    PubMed  CAS  Google Scholar 

  41. Xiao E, Xia-Zhang L, Ferin M (2002) Inadequate luteal function is the initial clinical cyclic defect in a 12-day stress model that includes a psychogenic component in the rhesus monkey. J Clin Endocrinol Metab 87:2232–2237

    Article  PubMed  CAS  Google Scholar 

  42. Baer DS, Crumpacker DW (1977) Fertility and offspring survival in mice selected for different sensitivities to alcohol. Behav Genet 7:95–103

    Article  PubMed  CAS  Google Scholar 

  43. Osterlund MK, Overstreet DH, Hurd YL (1999) The flinders sensitive line rats, a genetic model of depression, show abnormal serotonin receptor mRNA expression in the brain that is reversed by 17beta-estradiol. Mol Brain Res 74:158–166

    Article  PubMed  CAS  Google Scholar 

  44. Li XF, Edward J, Mitchell JC, Shao B, Bowes JE, Coen CW, Lightman SL, O’Byrne KT (2004) Differential effects of repeated restraint stress on pulsatile lutenizing hormone secretion in female Fischer, Lewis and Wistar rats. J Neuroendocrinol 16:620–627

    Article  PubMed  CAS  Google Scholar 

  45. Henn FA, Vollmayr B (2005) Stress models of depression: forming genetically vulnerable strains. Neurosci Biobehav Rev 29:799–804

    Article  PubMed  Google Scholar 

  46. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  47. Katz JL, Boyar R, Roffwarg H, Hellman L, Weiner H (1978) Weight and circadian luteinizing hormone secretory pattern in anorexia nervosa. Psychosom Med 40:549–567

    PubMed  CAS  Google Scholar 

  48. van Binsbergen CJ, Coelingh Bennink HJ, Odink J, Haspels AA, Koppeschaar HP (1990) A comparative and longitudinal study on endocrine changes related to ovarian function in patients with anorexia nervosa. J Clin Endocrinol Metab 71:705–711

    PubMed  Google Scholar 

  49. Penas-Lledo E, Vaz Leal FJ, Waller G (2002) Excessive exercise in anorexia nervosa and bulimia nervosa: relation to eating characteristics and general psychopathology. Int J Eat Disord 31:370–375

    Article  PubMed  Google Scholar 

  50. Troop NA, Holbrey A, Treasure JL (1998) Stress, coping, and crisis support in eating disorders. Int J Eat Disord 24:157–166

    Article  PubMed  CAS  Google Scholar 

  51. Wolff GE, Crosby RD, Roberts JA, Wittrock DA (2000) Differences in daily stress, mood, coping, and eating behavior in binge eating and nonbinge eating college women. Addict Behav 25:205–216

    Article  PubMed  CAS  Google Scholar 

  52. Loucks AB, Laughlin GA, Mortola JF, Girton L, Nelson JC, Yen SS (1992) Hypothalamic–pituitary–thyroidal function in eumenorrheic and amenorrheic athletes. J Clin Endocrinol Metab 75:514–518

    Article  PubMed  CAS  Google Scholar 

  53. Laughlin GA, Yen SS (1996) Nutritional and endocrine–metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab 81:4301–4309

    Article  PubMed  CAS  Google Scholar 

  54. Warren MP, Stiehl AL (1999) Exercise and female adolescents: effects on the reproductive and skeletal systems. J Am Med Women’s Assoc 54:115–120, 138

    CAS  Google Scholar 

  55. Siever LJ, Kahn RS, Lawlor BA, Trestman RL, Lawrence TL, Coccaro EF (1991) II. Critical issues in defining the role of serotonin in psychiatric disorders. Pharmacol Rev 43:509–525

    PubMed  CAS  Google Scholar 

  56. Van de Kar L (1991) Neuroendocrine pharmacology of serotonergic (5HT) neurons. Ann Rev Pharmacol Toxicol 31:289–320

    Article  Google Scholar 

  57. Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–231

    PubMed  CAS  Google Scholar 

  58. Mann JJ, McBride PA, Malone KM, DeMeo M, Keilp J (1995) Blunted serotonergic responsivity in depressed inpatients. Neuropsychopharmacology 13:53–64

    Article  PubMed  CAS  Google Scholar 

  59. Tancer ME, Mailman RB, Stein MF, Mason GA, Carson SW, Golden RN (1994) Neuroendocrine responsivity to monoaminergic system probes in generalized social phobia. Anxiety 1:216–223

    PubMed  Google Scholar 

  60. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12:2–19

    Article  PubMed  Google Scholar 

  61. Bhagwagar Z, Whale R, Cowen PJ (2002) State and trait abnormalities in serotonin function in major depression. Br J Psychiatry 180:24–28

    Article  PubMed  Google Scholar 

  62. Botchin MB, Kaplan JR, Manuck SB, Mann JJ (1994) Neuroendocrine responses to fenfluramine challenge are influenced by exposure to chronic social stress in adult male cynomolgus macaques. Psychoneuroendocrinology 19:1–11

    Article  PubMed  CAS  Google Scholar 

  63. Shively CA, Fontenot MB, Kaplan JR (1995) Social status, behavior, and central serotonergic responsivity in female cynomolgus monkeys. Am J Primatol 37:333–339

    Article  Google Scholar 

  64. Filipenko ML, Beilina AG, Alekseyenko OV, Dolgov VV, Kudryavtseva NN (2002) Increase in expression of brain serotonin transporter and monoamine oxidase genes induced by repeated experience of social defeats in male mice. Biochemistry 67:451–455

    PubMed  CAS  Google Scholar 

  65. O’Keane V, Dinan TG (1991) Prolactin and cortisol responses to d-fenfluramine in major depression: evidence for diminished responsivity of central serotonergic function. Am J Psychiatry 148:1009–1015

    PubMed  CAS  Google Scholar 

  66. Newman ME, Shapira B, Lerer B (1998) Evaluation of central serotonergic function in affective and related disorders by the fenfluramine challenge test: a critical review. Int J Neuropsychopharmacol 1:49–69

    Article  PubMed  CAS  Google Scholar 

  67. Rothman RB, Baumann MH (2002) Serotonin releasing agents. Neurochemical, therapeutic and adverse effects. Pharmacol Biochem Behav 71:825–836

    Article  PubMed  CAS  Google Scholar 

  68. Bethea CL, Pau FK, Fox S, Hess DL, Berga SL, Cameron JL (2005a) Sensitivity to stress-induced reproductive dysfunction linked to activity of the serotonin system. Fertil Steril 83:148–155

    Article  PubMed  CAS  Google Scholar 

  69. Graeff FG, Guimaraes FS, De Andrade TG, Deakin JF (1996) Role of 5HT in stress, anxiety and depression. Pharmacol Biochem Behav 54:129–141

    Article  PubMed  CAS  Google Scholar 

  70. Summers CH, Larson ET, Summers TR, Renner KJ, Greenberg N (1998) Regional and temporal separation of serotonergic activity mediating social stress. Neuroscience 87:489–496

    Article  PubMed  CAS  Google Scholar 

  71. Bethea CL, Lu NZ, Gundlah C, Streicher JM (2002) Diverse actions of ovarian steroids in the serotonin neural system. Front Neuroendocrinol 23:41–100

    Article  PubMed  CAS  Google Scholar 

  72. Van de Kar LD, Carnes M, Maslowski J, Bonadonna AM, Rittenhouse PA, Kunimoto K, Piechowski RA, Bethea CL (1989) Neuroendocrine evidence for denervation supersensitivity of serotonin receptors: effects of the 5HT agonist RU 24969 on corticotropin, corticosterone, prolactin and renin secretion. J Pharmacol Exp Ther 251:428–433

    PubMed  Google Scholar 

  73. Van de Kar LD, Karteszi M, Bethea CL, Ganong WF (1985a) Serotonergic stimulation of prolactin and corticosterone secretion is mediated by different pathways from the mediobasal hypothalamus. Neuroendocrinology 41:380–384

    Article  PubMed  Google Scholar 

  74. Bagdy G, Makara GB (1994) Hypothalamic paraventricular nucleus lesions differentially affect serotonin-1A (5HT-1A) and 5HT2 receptor agonist-induced oxytocin, prolactin and corticosterone responses. Endocrinology 143:1127–1131

    Article  Google Scholar 

  75. Van de Kar LD, Urban JH, Richardson KD, Bethea CL (1985b) Pharmacological studies on the serotonergic and nonserotonin-mediated stimulation of prolactin and corticosterone secretion by fenfluramine. Neuroendocrinology 41:283–288

    Article  PubMed  Google Scholar 

  76. Anthenelli RM, Maxwell RA, Geracoti TDJ, Hauger R (2001) Stress hormone dysregulation at rest and after serotonergic stimulation among alcohol-dependent men with extended abstinence and controls. Alcohol Clin Exp Res 25:692–703

    Article  PubMed  CAS  Google Scholar 

  77. Weijers HG, Wiesbeck GA, Jakob F, Boning J (2001) Neuroendocrine responses to fenfluramine and its relationship to personality in alcoholism. J Neural Transm 108:1093–1105

    Article  PubMed  CAS  Google Scholar 

  78. Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192

    Article  PubMed  CAS  Google Scholar 

  79. Matthews KA, Flory JD, Muldoon MF, Manuck SB (2000) Does socioeconomic status relate to central serotonergic responsivity in healthy adults. Psychosom Med 62:231–237

    PubMed  CAS  Google Scholar 

  80. Martin LJ, Blangero J, Rogers J, Mahaney MC, Hixson JE, Carey KD, Morin PA, Comuzzie AG (2001) A quantitative trait locus influencing estrogen levels maps to a region homologous to human chromosome 20. Physiol Genomics 5:75–80

    PubMed  CAS  Google Scholar 

  81. Collins RL, Williams RF, Hodgen GD (1984a) Endocrine consequences of prolonged ovarian hyperstimulation: hyperprolactinemia, follicular atresia, and premature luteinization. Fertil Steril 42:436–445

    PubMed  CAS  Google Scholar 

  82. Collins RL, Williams RF, Hodgen GD (1984b) Human menopausal gonadotropin/human chorionic gonadotropin-induced ovarian hyperstimulation with transient hyperprolactinemia: steroidogenesis enhanced during bromocriptine therapy in monkeys. J Clin Endocrinol Metab 55:727–733

    Google Scholar 

  83. Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66:1673–1680

    Article  PubMed  CAS  Google Scholar 

  84. Walther DJ, Peter J-U, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76

    Article  PubMed  CAS  Google Scholar 

  85. Bethea CL, Streicher JM, Mirkes SJ, Sanchez RL, Reddy AP, Cameron JL (2005b) Serotonin-related gene expression in female monkeys with individual sensitivity to stress. Neuroscience 132:151–166

    Article  PubMed  CAS  Google Scholar 

  86. Pecins-Thompson M, Brown NA, Kohama SG, Bethea CL (1996) Ovarian steroid regulation of tryptophan hydroxylase mRNA expression in rhesus macaques. J Neurosci 16:7021–7029

    PubMed  CAS  Google Scholar 

  87. Mann JJ, Malone KM, Diehl DJ, Perel J, Cooper TB, Mintun MA (1996) Demonstration in vivo of reduced serotonin responsivity in the brain of untreated depressed patients. Am J Psychiatry 153:174–182

    PubMed  CAS  Google Scholar 

  88. Cleare AJ, Murray RM, O’Keane V (1998) Assessment of serotonergic function in major depression using d-fenfluramine: relation to clinical variables and antidepressant response. Biol Psychiatry 44:555–561

    Article  PubMed  CAS  Google Scholar 

  89. Arango V, Underwood MD, Mann JJ (2002) Serotonin brain circuits involved in major depression and suicide. Prog Brain Res 136:443–453

    Article  PubMed  CAS  Google Scholar 

  90. Sobczak S, Honig A, van Duinen MA, Reidel WJ (2002) Serotonergic dysregulation in bipolar disorders: a literature review of serotonergic challenge studies. Bipolar Disord 4:347–356

    Article  PubMed  CAS  Google Scholar 

  91. Monteleone P, Brambilla F, Bortolotti F, La Rocca A, Maj M (1998) Prolactin response to d-fenfluramine is blunted in people with anorexia nervosa. Br J Psychiatry 172:439–442

    Article  PubMed  CAS  Google Scholar 

  92. Fitzgerald M, Malone KM, Li S, Harrison WM, McBride PA, Endicott J, Cooper T, Mann JJ (2003) Blunted serotonin response to fenfluramine challenge in premenstrual dysphoric disorder. Am J Psychiatry 154:556–558

    Google Scholar 

  93. Shively CA, Mirkes SJ, Lu NZ, Henderson JA, Bethea CL (2003) Soy and social stress affect serotonin neurotransmission in primates. Pharmacogenomics J 3:114–121

    Article  PubMed  CAS  Google Scholar 

  94. Meltzer CC, Smith G, DeKosky ST, Pollock BG, Mathis CA, Moore RY, Kupfer DJ, Reynolds CF III (1998) Serotonin in aging, late-life depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacology 18:407–430

    Article  PubMed  CAS  Google Scholar 

  95. Terry AV Jr, Buccafusco JJ, Wilson C (2008) Cognitive dysfunction in neuropsychiatric disorders: selected serotonin receptor subtypes as therapeutic targets. Behav Brain Res (in press)

  96. Thomas AJ, O’Brien JT (2008) Depression and cognition in older adults. Curr Opin Psychiatry 21:8–13

    PubMed  Google Scholar 

  97. Montgomery SM, Bartley MJ, Wilkinson RG (1997) Family conflict and slow growth. Arch Dis Child 77:326–330

    PubMed  CAS  Google Scholar 

  98. Russak LG, Schwartz GE (1997) Feelings of parental care predict health status in midlife: a 35 year follow-up of the Harvard Mastery of Stress Study. J Behav Med 20:1–11

    Article  Google Scholar 

  99. Wallace DJ (1987) The role of stress and trauma in rheumatoid arthritis and systemic lupus erythematosus. Semin Arthritis Rheum 16:153–157

    Article  PubMed  CAS  Google Scholar 

  100. Bethea CL (1994) Regulation of progestin receptors in raphe neurons of steroid-treated monkeys. Neuroendocrinology 60:50–61

    Article  PubMed  CAS  Google Scholar 

  101. Underwood MD, Khaibulina AA, Ellis SP, Moran A, Rice PM, Mann JJ, Arango V (1999) Morphometry of the dorsal raphe nucleus serotonergic neurons in suicide victims. Biol Psychiatry 46:473–483

    Article  PubMed  CAS  Google Scholar 

  102. Aletrino MA, Vogels OJM, Van Domburg PHMF, Ten Donkelaar HJ (1992) Cell loss in the nucleus raphes dorsalis in Alzeheimer’s disease. Neurobiol Aging 13:461–468

    Article  PubMed  CAS  Google Scholar 

  103. Halliday G, Ellis J, Heard R, Caine D, Harper C (1993) Brainstem serotonergic neurons in chronic alcoholics with and without the memory impairment of Korsakoff’s psychosis. J Neuropathol Exp Neurol 52:567–579

    Article  PubMed  CAS  Google Scholar 

  104. Bethea CL, Pecins-Thompson M, Schutzer WE, Gundlah C, Lu ZN (1999) Ovarian steroids and serotonin neural function. Mol Neurobiol 18:87–123

    Article  Google Scholar 

  105. Kempermann G, Kronenberg G (2003) Depressed new neurons—adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry 54:499–503

    Article  PubMed  Google Scholar 

  106. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, Gray NA, Zarate CA Jr, Charney DS (2003) Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 53:707–742

    Article  PubMed  CAS  Google Scholar 

  107. Yang SH, Liu R, Wu SS, Simpkins JW (2003) The use of estrogens and related compounds in the treatment of damage from cerebral ischemia. Ann N Y Acad Sci 1007:101–107

    Article  PubMed  CAS  Google Scholar 

  108. Zhao L, Wu TW, Brinton RD (2004) Estrogen receptor subtypes alpha and beta contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 1010:22–34

    Article  PubMed  CAS  Google Scholar 

  109. Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal raphe and median raphe nuclei in the rat. J Comp Neurol 179:641–668

    Article  PubMed  CAS  Google Scholar 

  110. Azmitia EC, Gannon PJ (1986) The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis. Adv Neurol 43:407–468

    PubMed  CAS  Google Scholar 

  111. Wright DE, Seroogy KB, Lunfergren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin 1A, 1C and 2 receptor subtype mRNA in rat brain. J Comp Neurol 351:357–373

    Article  PubMed  CAS  Google Scholar 

  112. Gundlah C, Pecins-Thompson M, Schutzer WE, Bethea CL (1999) Ovarian steroid effects on serotonin 1A, 2A and 2C receptor mRNA in macaque hypothalamus. Mol Brain Res 63:325–339

    Article  PubMed  CAS  Google Scholar 

  113. Robinson JE (1995) Gamma amino-butyric acid and the control of GnRH secretion in sheep. J Reprod Fertil Suppl 49:221–230

    PubMed  CAS  Google Scholar 

  114. Sim JA, Skynner MJ, Pape JR, Herbison AE (2000) Late postnatal reorganization of GABA(A) receptor signalling in native GnRH neurons. Eur J Neurosci 12:3497–3504

    Article  PubMed  CAS  Google Scholar 

  115. Jansen HT, Cutter C, Hardy S, Lehman MN, Goodman RL (2003) Seasonal plasticity within the gonadotropin-releasing hormone (GnRH) system of the ewe: changes in identified GnRH inputs and glial association. Endocrinology 144:3663–3676

    Article  PubMed  CAS  Google Scholar 

  116. Morello H, Caligaris L, Haymal B, Taleisnik S (1989) Inhibition of proestrous LH surge and ovulation in rats evoked by stimulation of the medial raphe nucleus involves a GABA-mediated mechanism. Neuroendocrinology 50:81–87

    Article  PubMed  CAS  Google Scholar 

  117. Mirkes SJ, Bethea CL (2001) Oestrogen, progesterone and serotonin converge on GABAergic neurones in the monkey hypothalamus. J Neuroendocrinol 13:182–192

    Article  PubMed  CAS  Google Scholar 

  118. Centeno ML, Sanchez RL, Cameron JL, Bethea CL (2007a) Hypothalamic expression of serotonin 1A, 2A and 2C receptors and GAD67 in female cynomolgus monkeys with different sensitivity to stress. Brain Res 1142:1–12

    Article  PubMed  CAS  Google Scholar 

  119. Pecins-Thompson M, Bethea CL (1998) Ovarian steroid regulation of 5HT1A autoreceptor messenger ribonucleic acid expression in the dorsal raphe of rhesus macaques. Neuroscience 89:267–277

    Article  Google Scholar 

  120. Bethea CL, Brown NA, Kohama SG (1996) Steroid regulation of estrogen and progestin receptor messenger ribonucleic acid in monkey hypothalamus and pituitary. Endocrinology 137:4372–4383

    Article  PubMed  CAS  Google Scholar 

  121. Fargin A, Yamamoto K, Cotecchia S, Goldsmith PK, Spiegel AM, Lapetina EG, Caron MG, Lefkowitz RJ (1991) Dual coupling of the cloned 5-HT1A receptor to both adenylyl cyclase and phospholipase C is mediated via the same Gi protein. Cell Signal 3:547–557

    Article  PubMed  CAS  Google Scholar 

  122. Albert PR, Lembo P, Storring JM, Charest A, Saucier C (1996) The 5-HT1A receptor: signaling, desensitization, and gene transcription. Neuropsychopharmacology 14:19–25

    Article  PubMed  CAS  Google Scholar 

  123. Aiello-Zaldivar M, Luine V, Frankfurt M (1992) 5,7-DHT facilitated lordosis: effects of 5-HT agonists. Neuroreport 3:542–544

    Article  PubMed  CAS  Google Scholar 

  124. Uphouse L, Caldarola-Pastuszka M, Montanez S (1992) Intracerebral actions of the 5-HT1A agonists, 8-OH-DPAT and buspirone and of the 5-HT1A partial agonist/antagonist, NAN-190, on female sexual behavior. Neuropharmacology 31:969–981

    Article  PubMed  CAS  Google Scholar 

  125. Blundell JE, Hill AJ (1987) Serotoninergic modulation of the pattern of eating and the profile of hunger-satiety in humans. Int J Obes 11(Suppl 3):141–155

    PubMed  Google Scholar 

  126. Schwartz DH, Hernandez L, Hoebel BG (1990) Serotonin release in lateral and medial hypothalamus during feeding and its anticipation. Brain Res Bull 25:797–802

    Article  PubMed  CAS  Google Scholar 

  127. Sanders-Bush E, Canton H (1995) Serotonin receptors: signal transduction pathways. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology, the fourth generation of progress. Raven, New York, pp 431–442

    Google Scholar 

  128. Van de Kar LD, Javed A, Zhang Y, Serres F, Raap DK, Gray TS (2001) 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J Neurosci 21:3572–3579

    PubMed  Google Scholar 

  129. Adams KH, Hansen ES, Pinborg LH, Hasselbalch SG, Svarer C, Holm S, Bolwig TG, Knudsen GM (2005) Patients with obsessive–compulsive disorder have increased 5-HT2A receptor binding in the caudate nuclei. Int J Neuropsychopharmacol 8:391–401

    Article  PubMed  CAS  Google Scholar 

  130. Escriba PV, Ozaita A, Garcia-Sevilla JA (2004) Increased mRNA expression of alpha2A-adrenoceptors, serotonin receptors and mu-opioid receptors in the brains of suicide victims. Neuropsychopharmacology 29:1512–1521

    Article  PubMed  CAS  Google Scholar 

  131. Kaye WH, Bailer UF, Frank GK, Wagner A, Henry SE (2005) Brain imaging of serotonin after recovery from anorexia and bulimia nervosa. Physiol Behav 86:15–17

    Article  PubMed  CAS  Google Scholar 

  132. Peroutka SJ, Snyder SH (1980) Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science 210:88–90

    Article  PubMed  CAS  Google Scholar 

  133. Blackshear MA, Sanders-Bush E (1982) Serotonin receptor sensitivity after acute and chronic treatment with mianserin. J Pharmacol Exp Ther 221:303–308

    PubMed  CAS  Google Scholar 

  134. Saucier C, Morris SJ, Albert PR (1998) Endogenous serotonin-2A and -2C receptors in Balb/c-3T3 cells revealed in serotonin-free medium: desensitization and down-regulation by serotonin. Biochem Pharmacol 56:1347–1357

    Article  PubMed  CAS  Google Scholar 

  135. Boess FG, Martin IL (1994) Molecular biology of 5-HT receptors. Neuropharmacology 33:275–317

    Article  PubMed  CAS  Google Scholar 

  136. Gurevich I, Englander MT, Adlersberg M, Siegal NB, Schmauss C (2002) Modulation of serotonin 2C receptor editing by sustained changes in serotonergic neurotransmission. J Neurosci 22:10529–10532

    PubMed  CAS  Google Scholar 

  137. Pranzatelli MR, Murthy JN, Tailor PT (1993) Novel regulation of 5-HT1C receptors: down-regulation induced both by 5-HT1C/2 receptor agonists and antagonists. Eur J Pharmacol 244:1–5

    Article  PubMed  CAS  Google Scholar 

  138. Sullivan SD, Moenter SM (2005) GABAergic integration of progesterone and androgen feedback to gonadotropin-releasing hormone neurons. Biol Reprod 72:33–41

    Article  PubMed  CAS  Google Scholar 

  139. Sullivan SD, Moenter SM (2004a) Gamma-aminobutyric acid neurons integrate and rapidly transmit permissive and inhibitory metabolic cues to gonadotropin-releasing hormone neurons. Endocrinology 145:1194–1202

    Article  PubMed  CAS  Google Scholar 

  140. Sullivan SD, Moenter SM (2004b) Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc Natl Acad Sci USA 101:7129–7134

    Article  PubMed  CAS  Google Scholar 

  141. Leonhardt S, Shahab M, Luft H, Wuttke W, Jarry H (1999) Reduction of luteinizing hormone secretion induced by long-term feed restriction in male rats is associated with increased expression of GABA-synthesizing enzymes without alterations of GnRH gene expression. J Neuroendocrinol 11:613–619

    Article  PubMed  CAS  Google Scholar 

  142. Herbison AE, Chapman C, Dyer RG (1991) Role of medial preoptic GABA neurones in regulating luteinising hormone secretion in the ovariectomised rat. Exp Brain Res 87:345–352

    Article  PubMed  CAS  Google Scholar 

  143. Jarry H, Leonhardt S, Wuttke W (1991) Gamma-aminobutyric acid neurons in the preoptic/anterior hypothalamic area synchronize the phasic activity of the gonadotropin-releasing hormone pulse generator in ovariectomized rats. Neuroendocrinology 53:261–267

    Article  PubMed  CAS  Google Scholar 

  144. Scott CJ, Clarke IJ (1993) Evidence that changes in the function of the subtypes of the receptors for gamma-amino butyric acid may be involved in the seasonal changes in the negative-feedback effects of estrogen on gonadotropin-releasing hormone secretion and plasma luteinizing hormone levels in the ewe. Endocrinology 133:2904–2912

    Article  PubMed  CAS  Google Scholar 

  145. Mitsushima D, Hei DL, Terasawa E (1994) Gamma-aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc Natl Acad Sci USA 91:395–399

    Article  PubMed  CAS  Google Scholar 

  146. Spergel DJ, Kruth U, Hanley DF, Sprengel R, Seeburg PH (1999) GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J Neurosci 19:2037–2050

    PubMed  CAS  Google Scholar 

  147. Han SK, Todman MG, Herbison AE (2004) Endogenous GABA release inhibits the firing of adult gonadotropin-releasing hormone neurons. Endocrinology 145:495–499

    Article  PubMed  CAS  Google Scholar 

  148. Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397

    Article  PubMed  CAS  Google Scholar 

  149. Morimoto A, Nakamori T, Morimoto K, Tan N, Murakami N (1993) The central role of corticotropin-releasing factor (CRF-41) in psychological stress in rats. J Physiol 460:221–229

    PubMed  CAS  Google Scholar 

  150. Nemeroff CC (2004) Early-life adversity, CRF dysregulation, and vulnerability to mood and anxiety disorders. Psychopharmacol Bull 38:14–20

    PubMed  Google Scholar 

  151. Dunn AJ, Berridge CW (1990) Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Brain Res Rev 15:71–100

    Article  PubMed  CAS  Google Scholar 

  152. Liebsch G, Landgraf R, Gerstberger R, Probst JC, Wotjak CT, Engelmann M, Holsboer F, Montkowski A (1995) Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats. Regul Pept 59:229–239

    Article  PubMed  CAS  Google Scholar 

  153. Frim DM, Robinson BG, Pasieka KB, Majzoub JA (1990) Differential regulation of corticotropin-releasing hormone mRNA in rat brain. Am J Physiol 258:E686–E692

    PubMed  CAS  Google Scholar 

  154. Delville Y, Stires C, Ferris CF (1992) Distribution of corticotropin-releasing hormone immunoreactivity in golden hamster brain. Brain Res Bull 29:681–684

    Article  PubMed  CAS  Google Scholar 

  155. Keegan CE, Herman JP, Karolyi IJ, O’Shea KS, Camper SA, Seasholtz AF (1994) Differential expression of corticotropin-releasing hormone in developing mouse embryos and adult brain. Endocrinology 134:2547–2555

    Article  PubMed  CAS  Google Scholar 

  156. Leadem C, Kalra SP (1985) Reversal of beta-endorphin-induced blockade of ovulation and luteinizing hormone surge with prostaglandin E2. Endocrinology 117:684–689

    PubMed  CAS  Google Scholar 

  157. Petraglia F, Di Meo G, De Leo V, Nappi C, Facchinetti F, Genazzani AR (1986) Plasma beta-endorphin levels in anovulatory states: changes after treatments for the induction of ovulation. Fertil Steril 45:185–190

    PubMed  CAS  Google Scholar 

  158. Millington WR, Blum M, Knight R, Mueller GP, Roberts JL, O’Donohue TL (1986) A diurnal rhythm in proopiomelanocortin messenger ribonucleic acid that varies concomitantly with the content and secretion of beta-endorphin in the intermediate lobe of the rat pituitary. Endocrinology 118:829–834

    PubMed  CAS  Google Scholar 

  159. Ferin M, Vande Wiele R (1984) Endogenous opioid peptides and the control of the menstrual cycle. Eur J Obstet Gynecol Reprod Biol 18:365–373

    Article  PubMed  CAS  Google Scholar 

  160. Centeno ML, Sanchez RL, Reddy AP, Cameron JL, Bethea CL (2007c) Corticotropin-releasing hormone and pro-opiomelanocortin gene expression in female monkeys with differences in sensitivity to stress. Neuroendocrinology 86:277–288

    Article  PubMed  CAS  Google Scholar 

  161. Holsboer F (1999) The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 33:181–214

    Article  PubMed  CAS  Google Scholar 

  162. Carpenter LL, Tyrka AR, McDougle CJ, Malison RT, Owens MJ, Nemeroff CB, Price LH (2004) Cerebrospinal fluid corticotropin-releasing factor and perceived early-life stress in depressed patients and healthy control subjects. Neuropsychopharmacology 29:777–784

    Article  PubMed  CAS  Google Scholar 

  163. Gutman DA, Nemeroff CB (2003) Persistent central nervous system effects of an adverse early environment: clinical and preclinical studies. Physiol Behav 79:471–478

    Article  PubMed  CAS  Google Scholar 

  164. Bao AM, Hestiantoro A, Van Someren EJ, Swaab DF, Zhou JN (2005) Colocalization of corticotropin-releasing hormone and oestrogen receptor-alpha in the paraventricular nucleus of the hypothalamus in mood disorders. Brain 128:1301–1313

    Article  PubMed  Google Scholar 

  165. Duncko R, Kiss A, Skultetyova I, Rusnak M, Jezova D (2001) Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA levels decrease in both sexes. Psychoneuroendocrinology 26:77–89

    Article  PubMed  CAS  Google Scholar 

  166. Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Article  PubMed  CAS  Google Scholar 

  167. Luiten PG, ter Horst GJ, Karst H, Steffens AB (1985) The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res 329:374–378

    Article  PubMed  CAS  Google Scholar 

  168. Portillo F, Carrasco M, Vallo JJ (1998) Separate populations of neurons within the paraventricular hypothalamic nucleus of the rat project to vagal and thoracic autonomic preganglionic levels and express c-Fos protein induced by lithium chloride. J Chem Neuroanat 14:95–102

    Article  PubMed  CAS  Google Scholar 

  169. Lenz HJ (1987) Extrapituitary effects of corticotropin-releasing factor. Horm Metab Res 16(Suppl):17–23

    CAS  Google Scholar 

  170. Bittencourt JC, Sawchenko PE (2000) Do centrally administered neuropeptides access cognate receptors?: an analysis in the central corticotropin-releasing factor system. J Neurosci 20:1142–1156

    PubMed  CAS  Google Scholar 

  171. Kalin NH, Shelton SE, Davidson RJ (2000) Cerebrospinal fluid corticotropin-releasing hormone levels are elevated in monkeys with patterns of brain activity associated with fearful temperament. Biol Psychiatry 47:579–585

    Article  PubMed  CAS  Google Scholar 

  172. Rivier C, Rivier J, Vale W (1986) Stress-induced inhibition of reproductive functions: role of endogenous corticotropin-releasing factor. Science 231:607–609

    Article  PubMed  CAS  Google Scholar 

  173. Ferin M (1993) Neuropeptides, the stress response, and the hypothalamo–pituitary–gonadal axis in the female rhesus monkey. Ann N Y Acad Sci 697:106–116

    Article  PubMed  CAS  Google Scholar 

  174. Polkowska J, Przekop F (1997) The effect of corticotropin-releasing factor (CRF) on the gonadotropin hormone releasing hormone (GnRH) hypothalamic neuronal system during preovulatory period in the ewe. Acta Neurobiol Exp (Wars) 57:91–99

    CAS  Google Scholar 

  175. Dudas B, Merchenthaler I (2002) Close juxtapositions between luteinizing hormone-releasing hormone-immunoreactive neurons and corticotropin-releasing factor-immunoreactive axons in the human diencephalon. J Clin Endocrinol Metab 87:5778–5784

    Article  PubMed  CAS  Google Scholar 

  176. Jeong KH, Jacobson L, Widmaier EP, Majzoub JA (1999) Normal suppression of the reproductive axis following stress in corticotropin-releasing hormone-deficient mice. Endocrinology 140:1702–1708

    Article  PubMed  CAS  Google Scholar 

  177. Tsukamura H, Ohkura S, Coen CW, Maeda KI (1993) The paraventricular nucleus and corticotrophin-releasing hormone are not critical in suppressing pulsatile LH secretion in ovariectomized lactating rats. J Endocrinol 137:291–297

    PubMed  CAS  Google Scholar 

  178. Hahn JD, Kalamatianos T, Coen CW (2003) Studies on the neuroanatomical basis for stress-induced oestrogen-potentiated suppression of reproductive function: evidence against direct corticotropin-releasing hormone projections to the vicinity of luteinizing hormone-releasing hormone cell bodies in female rats. J Neuroendocrinol 15:732–742

    Article  PubMed  CAS  Google Scholar 

  179. Herod S, Cameron JL (2007) Female monkeys sensitive to stress-induced reproductive dysfunction have low central drive to the reproductive axis in nonstressed conditions. 89th Annual Meeting of the Endocrine Society, P2-109

  180. Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–444

    Article  PubMed  CAS  Google Scholar 

  181. Bassett JL, Foote SL (1992) Distribution of corticotropin-releasing factor-like immunoreactivity in squirrel monkey (Saimiri sciureus) amygdala. J Comp Neurol 323:91–102

    Article  PubMed  CAS  Google Scholar 

  182. Kalin NH, Shelton SE, Davidson RJ (2004) The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 24:5506–5515

    Article  PubMed  CAS  Google Scholar 

  183. He L, Gilligan PJ, Zaczek R, Fitzgerald LW, McElroy J, Shen HS, Saye JA, Kalin NH, Shelton S, Christ D, Trainor G, Hartig P (2000) 4-(1,3-Dimethoxyprop-2-ylamino)-2,7-dimethyl-8-(2, 4-dichlorophenyl)pyrazolo[1,5-a]-1,3,5-triazine: a potent, orally bioavailable CRF(1) receptor antagonist. J Med Chem 43:449–456

    Article  PubMed  CAS  Google Scholar 

  184. Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82:443–468

    Article  PubMed  CAS  Google Scholar 

  185. Summers CH, Kampshoff JL, Ronan PJ, Lowry CA, Prestbo AA, Korzan WJ, Renner KJ (2003) Monoaminergic activity in subregions of raphe nuclei elicited by prior stress and the neuropeptide corticotropin-releasing factor. J Neuroendocrinol 15:1122–1133

    Article  PubMed  CAS  Google Scholar 

  186. Oshima A, Flachskamm C, Reul JM, Holsboer F, Linthorst AC (2003) Altered serotonergic neurotransmission but normal hypothalamic–pituitary–adrenocortical axis activity in mice chronically treated with the corticotropin-releasing hormone receptor type 1 antagonist NBI 30775. Neuropsychopharmacology 28:2148–2159

    PubMed  CAS  Google Scholar 

  187. Linthorst AC (2005) Interactions between corticotropin-releasing hormone and serotonin: implications for the aetiology and treatment of anxiety disorders. Handb Exp Pharmacol 169:181–204

    Article  PubMed  CAS  Google Scholar 

  188. Penalva RG, Flachskamm C, Zimmermann S, Wurst W, Holsboer F, Reul JM, Linthorst AC (2002) Corticotropin-releasing hormone receptor type 1-deficiency enhances hippocampal serotonergic neurotransmission: an in vivo microdialysis study in mutant mice. Neuroscience 109:253–266

    Article  PubMed  CAS  Google Scholar 

  189. Funk D, Li Z, Shaham Y, Le AD (2003) Effect of blockade of corticotropin-releasing factor receptors in the median raphe nucleus on stress-induced c-fos mRNA in the rat brain. Neuroscience 122:1–4

    Article  PubMed  CAS  Google Scholar 

  190. Kaelber WW, Mitchell CL (1975) Alteration in escape responding in the cat. A lesion and degeneration and comparison following stimulation studies. Brain Behav Evol 12:137–150

    Article  PubMed  CAS  Google Scholar 

  191. Kaelber WW, Mitchell CL, Yarmat AJ, Afifi AK, Lorens SA (1975) Centrum-medianum–parafascicularis lesions and reactivity to noxious and non-noxious stimuli. Exp Neurol 46:282–290

    Article  PubMed  CAS  Google Scholar 

  192. Fuchs SA, Siegel A (1984) Neural pathways mediating hypothalamically elicited flight behavior in the cat. Brain Res 306:263–281

    Article  PubMed  CAS  Google Scholar 

  193. Hsu DT, Lombardo KA, Herringa RJ, Bakshi VP, Roseboom PH, Kalin NH (2001) Corticotropin-releasing hormone messenger RNA distribution and stress-induced activation in the thalamus. Neuroscience 105:911–921

    Article  PubMed  CAS  Google Scholar 

  194. Parent M, Parent A (2005) Single-axon tracing and three-dimensional reconstruction of centre median-parafascicular thalamic neurons in primates. J Comp Neurol 481:127–144

    Article  PubMed  Google Scholar 

  195. Van Vugt DA, Lam NY, Ferin M (1984) Reduced frequency of pulsatile luteinizing hormone secretion in the luteal phase of the rhesus monkey. Involvement of endogenous opiates. Endocrinology 115:1095–1101

    PubMed  Google Scholar 

  196. Ferin M (1987) A role for the endogenous opioid peptides in the regulation of gonadotropin secretion in the primate. Horm Res 28:119–125

    PubMed  CAS  Google Scholar 

  197. Herbison AE (1998) Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocrine Rev 3:302–330

    Article  Google Scholar 

  198. Centeno ML, Sanchez RL, Cameron JL, Bethea CL (2007b) Hypothalamic GnRH expression in female monkeys with different sensitivity to stress. J Neuroendocrinology 19:1–11

    Article  CAS  Google Scholar 

  199. Przekop F, Polkowska J, Mateusiak K (1988) The effect of prolonged stress on the hypothalamic luteinizing hormone-releasing hormone (LHRH) in the anoestrous ewe. Exp Clin Endocrinol 91:334–340

    PubMed  CAS  Google Scholar 

  200. Polkowska J (1996) Stress and nutritional influences on GnRH and somatostatin neuronal systems in the ewe. Acta Neurobiol Exp (Wars) 56:797–806

    CAS  Google Scholar 

  201. Amado D, Cavalheiro EA, Bentivoglio M (1993) Epilepsy and hormonal regulation: the patterns of GnRH and galanin immunoreactivity in the hypothalamus of epileptic female rats. Epilepsy Res 14:149–159

    Article  PubMed  CAS  Google Scholar 

  202. Friedman MN, Geula C, Holmes GL, Herzog AG (2002) GnRH-immunoreactive fiber changes with unilateral amygdala-kindled seizures. Epilepsy Res 52:73–77

    Article  PubMed  CAS  Google Scholar 

  203. Fraser MO, Pohl CR, Plant TM (1989) The hypogonadotropic state of the prepubertal male rhesus monkey (Macaca mulatta) is not associated with a decrease in hypothalamic gonadotropin-releasing hormone content. Biol Reprod 40:972–980

    Article  PubMed  CAS  Google Scholar 

  204. Ma YJ, Costa ME, Ojeda SR (1994) Developmental expression of the genes encoding transforming growth factor alpha and its receptor in the hypothalamus of female rhesus macaques. Neuroendocrinology 60:346–359

    Article  PubMed  CAS  Google Scholar 

  205. El Majdoubi M, Sahu A, Plant TM (2000) Changes in hypothalamic gene expression associated with the arrest of pulsatile gonadotropin-releasing hormone release during infancy in the agonadal male rhesus monkey (Macaca mulatta). Endocrinology 141:3273–3277

    Article  PubMed  Google Scholar 

  206. El Majdoubi M, Sahu A, Plant TM (1998) Effect of estrogen on hypothalamic transforming growth factor alpha and gonadotropin-releasing hormone gene expression in the female rhesus monkey. Neuroendocrinology 67:228–235

    Article  PubMed  Google Scholar 

  207. Krajewski SJ, Abel TW, Voytko ML, Rance NE (2003) Ovarian steroids differentially modulate the gene expression of gonadotropin-releasing hormone neuronal subtypes in the ovariectomized cynomolgus monkey. J Clin Endocrinol Metab 88:655–662

    Article  PubMed  CAS  Google Scholar 

  208. Rance NE, Uswandi SV (1996) Gonadotropin-releasing hormone gene expression is increased in the medial basal hypothalamus of postmenopausal women. J Clin Endocrinol Metab 81:3540–3546

    Article  PubMed  CAS  Google Scholar 

  209. Skynner MJ, Sim JA, Herbison AE (1999) Detection of estrogen receptor alpha and beta messenger ribonucleic acids in adult gonadotropin-releasing hormone neurons. Endocrinology 140:5195–5201

    Article  PubMed  CAS  Google Scholar 

  210. Barbarino A, De Marinis L, Folli G, Tofani A, Della Casa S, D’Amico C, Mancini A, Corsello SM, Sambo P, Barini A (1989) Corticotropin-releasing hormone inhibition of gonadotropin secretion during the menstrual cycle. Metabolism 38:504–506

    Article  PubMed  CAS  Google Scholar 

  211. Biller BMK, Federoff HJ, Koenig JI, Klibanski A (1990) Abnormal cortisol secretion and responses to corticotropin-releasing hormone in women with hypothalamic amenorrhea. J Clin Endocrinol Metab 70:311–317

    PubMed  CAS  Google Scholar 

  212. Brundu B, Loucks TL, Adler LJ, Cameron JL, Berga SL (2006) Increased cortisol in the cerebrospinal fluid of women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab 91:1561–1565

    Article  PubMed  CAS  Google Scholar 

  213. Helmreich DL, Mattern LG, Cameron JL (1993) Lack of a role of the hypothalamic–pituitary–adrenal axis in the fasting-induced suppression of luteinizing hormone secretion in adult male rhesus monkeys (Macaca mulatta). Endocrinology 132:2427–2437

    Article  PubMed  CAS  Google Scholar 

  214. Chytrova G, Johnson JE (2004) Spontaneous retinal activity modulates BDNF trafficking in the developing chick visual system. Mol Cell Neurosci 25:549–557

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Division of Animal Resources at ONPRC for the expert care of the animals and to the Department of Pathobiology for performing the necropsies. In addition, we would like to acknowledge Mr. Sam Fox who conducted the fenfluramine, CRH, and TRH challenge experiments; Dr. Nick Lu who perfused the brains; Mr. John Streicher who sectioned the midbrains; Ms. Rachel Sanchez who performed the immunocytochemical analysis of the CRH fibers in the amygdale; and Ms. Arubala Reddy who assisted with the construction of the CRH cDNA. This research was supported by Eunice Kennedy Shriver NICHD/NIH through cooperative agreement U54 HD 18185 as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research, NIH/MH62677 to CLB and NIH/RR00163 for the operation of ONPRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia L. Bethea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bethea, C.L., Centeno, M.L. & Cameron, J.L. Neurobiology of Stress-Induced Reproductive Dysfunction in Female Macaques. Mol Neurobiol 38, 199–230 (2008). https://doi.org/10.1007/s12035-008-8042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-008-8042-z

Keywords

Navigation