Skip to main content

Advertisement

Log in

Improvement of Cloning Efficiency in Minipigs Using Post-thawed Donor Cells Treated with Roscovitine

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Massachusetts General Hospital miniature pigs (MGH minipigs) have been established for organ transplantation studies across the homozygous major histocompatibility complex, but cloning efficiency of MGH minipigs is extremely low. This study was designed to increase the productivity of MGH minipigs by nuclear transfer of post-thaw donor cells after 1 h co-incubation with roscovitine. The MGH minipig cells were genetically modified with GT KO (alpha1,3-galactosyltransferase knock-out) and hCD46 KI (human CD46 knock-in) and used as donor cells. The GT KO/hCD46 KI donor cells were cultured for either 3 days (control group) or 1 h after thawing with 15 μM roscovitine (experimental group) prior to the nuclear transfer. The relative percentage of the transgenic donor cells that entered into G0/G1 was 93.7 % (±2.54). This was different from the donor cells cultured for 1 h with the roscovitine-treated group (84.6 % ±4.6) (P < 0.05) and without roscovitine (78.6 % ±5.5) (P < 0.01), respectively. The pregnancy rate and delivery rate in the roscovitine group (8/12 and 6/8, respectively) were significantly higher (P < 0.01) than those in the control group (6/19 and 3/6, respectively). In the experimental group, 12 GT KO/hCD46 KI transgenic minipigs were successfully generated, and five minipigs among them survived for more than 6 months so far. The recipient-based individual cloning efficiency ranged from 0.74 to 2.54 %. In conclusion, gene-modified donor cells can be used for cloning of MGH minipigs if the cells are post-thawed and treated with roscovitine for 1 h prior to nuclear transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Griesemer, A. D., Hirakata, A., Shimizu, A., Moran, S., Tena, A., Iwaki, H., et al. (2009). Results of Gal-Knockout porcine thymokidney xenografts. American Journal of Transplantation, 9, 2669–2678.

    Article  CAS  Google Scholar 

  2. Yamada, K., Yazawa, K., Shimizu, A., Iwanaga, T., Hisashi, Y., Nuhn, M., et al. (2005). Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1, 3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nature Medicine, 11, 32–34.

    Article  CAS  Google Scholar 

  3. Vodicka, P., Smetana, K, Jr, Dvorankova, B., Emerick, T., Xu, Y. Z., Ourednik, J., et al. (2005). The miniature pig as an animal model in biomedical research. Annals of the New York Academy of Sciences, 1049, 161–171.

    Article  Google Scholar 

  4. Hanekamp, J. S., Duran-Struuck, R., & Sachs, D. H. (2011). Allotransplantation in miniature swine in genetics and immunology. In P. A. McAnulty, A. D. Dayan, N. C. Ganderup, & K. L. Hastings (Eds.), The minipig in biological research (pp. 357–372). Boca Raton: CRC.

    Chapter  Google Scholar 

  5. Sachs, D. H., Leight, G., Cone, J., Schwarz, S., Stuart, L., & Rosenberg, S. (1976). Transplantation in miniature swine, I: fixation of the major histocompatibility complex. Transplantation, 22, 559–567.

    Article  CAS  Google Scholar 

  6. Lai, L., Kolber-Simonds, D., Park, K. W., Cheong, H. T., Greenstein, L. J., et al. (2002). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 295, 1089–1092.

    Article  CAS  Google Scholar 

  7. Zhao, J., Ross, J. W., Hao, Y., Spate, L. D., Walters, E. M., Samuel, M. S., et al. (2009). Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biology of Reproduction, 81, 525–530.

    Article  CAS  Google Scholar 

  8. Alessi, F., Quarta, S., Savio, M., Riva, F., Rossi, L., Stivala, L. A., et al. (1998). The cyclin dependent kinase inhibitors olomoucine and roscovitine arrest human fibroblasts in G1 phase by specific inhibition of CDK2 kinase activity. Experimental Cell Research, 245, 8–18.

    Article  CAS  Google Scholar 

  9. Park, H. J., Koo, O. J., Kwon, D. K., Kang, J. T., Jang, G., & Lee, B. C. (2010). Effect of roscovitine-treated donor cells on development of porcine cloned embryos. Reproduction in Domestic Animals, 45, 1082–1088.

    Article  CAS  Google Scholar 

  10. Ko, N., Lee, J. W., Hwang, S., Kim, B., Park, J. K., Ock, S. A., et al. (2013) Nucleofection-mediated alpha1, 3-galactosyltransferase gene inactivation and membrane cofactor protein expression for pig-to-primate xenotransplantation. Animal Biotechnology (in press).

  11. Ahn, K. S., Kim, Y. J., Kim, M., Lee, B. H., Heo, S. Y., Kang, M. J., et al. (2011). Resurrection of an alpha-1,3-galactosyltransferase gene-targeted miniature pig by recloning using postmortem ear skin fibroblasts. Theriogenology, 75, 933–939.

    Article  CAS  Google Scholar 

  12. Mezrich, J. D., Haller, G. W., Arn, J. S., Houser, S. L., Madsen, J. C., & Sachs, D. H. (2003). Histocompatible miniature swine: an inbred large-animal model. Transplantation, 27, 904–907.

    Article  Google Scholar 

  13. Conley, A. J., Jung, Y. C., Schwartz, N. K., Warner, C. M., Rothschild, M. F., & Ford, S. P. (1988). Influence of SLA haplotype on ovulation rate and litter size in miniature pigs. Journal of Reproduction and Fertility, 82, 595–601.

    Article  CAS  Google Scholar 

  14. Miyamoto, K., Hoshino, Y., Minami, N., Yamada, M., & Imai, H. (2007). Effects of synchronization of donor cell cycle on embryonic development and DNA synthesis in porcine nuclear transfer embryos. Journal of Reproduction and Development, 53, 237–246.

    Article  CAS  Google Scholar 

  15. Shufaro, Y., & Reubinoff, B. E. (2011). Cell cycle synchronization for the purpose of somatic cell nuclear transfer (SCNT). Methods in Molecular Biology, 761, 239–247.

    Article  Google Scholar 

  16. Nagashima, H., Fujimura, T., Takahagi, Y., Kurome, M., Wako, N., Ochiai, T., et al. (2003). Development of efficient strategies for the production of genetically modified pigs. Theriogenology, 59, 95–106.

    Article  CAS  Google Scholar 

  17. Hayes, O., Ramos, B., Rodriguez, L. L., Aguilar, A., Badia, T., & Castro, F. O. (2005). Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of the cell cycle in granulosa and fibroblast cells of cattle. Animal Reproduction Science, 87, 181–192.

    Article  CAS  Google Scholar 

  18. Cho, S. R., Ock, J. G., Yoo, B., Kumar, M., Choe, S. Y., & Rho, G. J. (2005). Effects of confluent, roscovitine treatment and serum starvation on the cell-cycle synchronization of bovine foetal fibroblasts. Reproduction in Domestic Animals, 45(40), 171–176.

    Article  Google Scholar 

  19. Kues, W. A., Carnwath, J. W., Paul, D., & Niemann, H. (2002). Cell cycle synchronization of porcine fetal fibroblasts by serum deprivation initiates a nonconventional form of apoptosis. Cloning and Stem Cells, 4, 231–243.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study received Grant support from the Agenda Program (No. PJ008587) and (PJ009095), Rural Development Administration (http://www.rda.go.kr), Republic of Korea. The authors appreciate Professor Hochi Shinichi (Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan) for his helpful discussions to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seongsoo Hwang or Jin-Ki Park.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, S., Oh, K.B., Kwon, DJ. et al. Improvement of Cloning Efficiency in Minipigs Using Post-thawed Donor Cells Treated with Roscovitine. Mol Biotechnol 55, 212–216 (2013). https://doi.org/10.1007/s12033-013-9671-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9671-7

Keywords

Navigation