Skip to main content
Log in

Expression and Localization of Connexins in the Outer Retina of the Mouse

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The identification of the proteins that make up the gap junction channels between rods and cones is of crucial importance to understand the functional role of photoreceptor coupling within the retinal network. In vertebrates, connexin proteins constitute the structural components of gap junction channels. Connexin36 is known to be expressed in cones whereas extensive investigations have failed to identify the corresponding connexin expressed in rods. Using immunoelectron microscopy, we demonstrate that connexin36 (Cx36) is present in gap junctions of cone but not rod photoreceptors in the mouse retina. To identify the rod connexin, we used nested reverse transcriptase polymerase chain reaction and tested retina and photoreceptor samples for messenger RNA (mRNA) expression of all known connexin genes. In addition to connexin36, we detected transcripts for connexin32, connexin43, connexin45, connexin50, and connexin57 in photoreceptor samples. Immunohistochemistry showed that connexin43, connexin45, connexin50, and connexin57 proteins are expressed in the outer plexiform layer. However, none of these connexins was detected at gap junctions between rods and cones as a counterpart of connexin36. Therefore, the sought-after rod protein must be either an unknown connexin sequence, a connexin36 splice product not detected by our antibodies, or a protein from a further gap junction protein family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abascal F, Zardoya R (2012) LRRC8 proteins share a common ancestor with pannexins, and may form hexameric channels involved in cell-cell communication. BioEssays News Rev Mol Cell Dev Biol 34:551–560

    Article  CAS  Google Scholar 

  • Asteriti S, Gargini C, Cangiano L (2014) Mouse rods signal through gap junctions with cones. eLife 3:e01386

    Article  PubMed Central  PubMed  Google Scholar 

  • Balen D, Ljubojevic M, Breljak D et al (2008) Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am J Physiol Cell Physiol 295:C475–C489

    Article  CAS  PubMed  Google Scholar 

  • Ball AK, McReynolds JS (1998) Localization of gap junctions and tracer coupling in retinal Müller cells. J Comp Neurol 393:48–57

    Article  CAS  PubMed  Google Scholar 

  • Beyer EC, Paul DL, Goodenough DA (1987) Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 105:2621–2629

    Article  CAS  PubMed  Google Scholar 

  • Boassa D, Ambrosi C, Qiu F et al (2007) Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 282:31733–31743

    Article  CAS  PubMed  Google Scholar 

  • Dang L, Pulukuri S, Mears AJ et al (2004) Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas. Mol Vis 10:323–327

    CAS  PubMed  Google Scholar 

  • Deans M, Völgyi B, Goodenough D et al (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36:703–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dedek K, Breuninger T, de Sevilla Müller LP et al (2009) A novel type of interplexiform amacrine cell in the mouse retina. Eur J Neurosci 30:217–228

    Article  PubMed  Google Scholar 

  • Dedek K, Schultz K, Pieper M et al (2006) Localization of heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina. Eur J Neurosci 24:1675–86

    Article  PubMed  Google Scholar 

  • DeVries SH, Qi X, Smith R et al (2002) Electrical coupling between mammalian cones. Curr Biol 12:1900–1907

    Article  CAS  PubMed  Google Scholar 

  • Dorgau B, Herrling R, Schultz K et al (2015) Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions. J Comp Neurol. doi:10.1002/cne.23779

    PubMed  Google Scholar 

  • Feigenspan A, Janssen-Bienhold U, Hormuzdi S et al (2004) Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J Neurosci 24:3325–34

    Article  CAS  PubMed  Google Scholar 

  • Feigenspan A, Teubner B, Willecke K, Weiler R (2001) Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J Neurosci 21:230–239

    CAS  PubMed  Google Scholar 

  • Foote CI, Zhou L, Zhu X, Nicholson BJ (1998) The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J Cell Biol 140:1187–1197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Güldenagel M, Söhl G, Plum A et al (2000) Expression patterns of connexin genes in mouse retina. J Comp Neurol 425:193–201

    Article  PubMed  Google Scholar 

  • Han Y, Massey SC (2005) Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. Proc Natl Acad Sci USA 102:13313--13318

  • Hilgen G, von Maltzahn J, Willecke K et al (2011) Subcellular distribution of connexin45 in OFF bipolar cells of the mouse retina. J Comp Neurol 519:433–450

    Article  CAS  PubMed  Google Scholar 

  • Hombach S, Janssen-Bienhold U, Söhl G et al (2004) Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci 19:2633–40

    Article  PubMed  Google Scholar 

  • Hornstein EP, Verweij J, Li PH, Schnapf JL (2005) Gap-junctional coupling and absolute sensitivity of photoreceptors in macaque retina. J Neurosci 25:11201–11209

    Article  CAS  PubMed  Google Scholar 

  • Hornstein EP, Verweij J, Schnapf JL (2004) Electrical coupling between red and green cones in primate retina. Nat Neurosci 7:745–750

    Article  CAS  PubMed  Google Scholar 

  • Janssen-Bienhold U, Dermietzel R, Weiler R (1998) Distribution of connexin43 immunoreactivity in the retinas of different vertebrates. J Comp Neurol 396:310–21

    Article  CAS  PubMed  Google Scholar 

  • Janssen-Bienhold U, Trümpler J, Hilgen G et al (2009) Connexin57 is expressed in dendro-dendritic and axo-axonal gap junctions of mouse horizontal cells and its distribution is modulated by light. J Comp Neurol 513:363–74

    Article  CAS  PubMed  Google Scholar 

  • Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–46

    CAS  PubMed  Google Scholar 

  • Katti C, Butler R, Sekaran S (2013) Diurnal and circadian regulation of connexin 36 transcript and protein in the mammalian retina. Invest Ophthalmol Vis Sci 54:821–9

    Article  CAS  PubMed  Google Scholar 

  • Kihara AH, Mantovani de Castro L, Belmonte MA et al (2006) Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina. J Neurobiol 66:1397–1410

    Article  CAS  PubMed  Google Scholar 

  • Kolb H, Jones J (1985) Electron microscopy of golgi-impregnated photoreceptors reveals connections between red and green cones in turtle retina. J Neurophysiol 54:304--317

  • Kreuzberg MM (2005) Functional properties of mouse connexin30.2 expressed in the conduction system of the heart. Circ Res 96:1169–1177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–8

    Article  CAS  PubMed  Google Scholar 

  • Lamb TD, Simon EJ (1976) The relation between intercellular coupling and electrical noise in turtle photoreceptors. J Physiol 263:257–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee E-J, Han J-W, Kim H-J et al (2003) The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur J Neurosci 18:2925–2934

    Article  PubMed  Google Scholar 

  • Li H, Chuang AZ, O’Brien J (2009) Photoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina. J Neurosci 29:15178–15186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Zhang Z, Blackburn MR et al (2013) Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J Neurosci 33:3135–3150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li PH, Verweij J, Long JH, Schnapf JL (2012) Gap-junctional coupling of mammalian rod photoreceptors and its effect on visual detection. J Neurosci 32:3552–3562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maxeiner S, Dedek K, Janssen-Bienhold U et al (2005) Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci 25:566–576

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Hilgen G, Dorgau B et al (2014) AII amacrine cells discriminate between heterocellular and homocellular locations when assembling connexin36-containing gap junctions. J Cell Sci 127:1190–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Brien JJ, Chen X, Macleish PR et al (2012) Photoreceptor coupling mediated by connexin36 in the primate retina. J Neurosci 32:4675–4687

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Brien JJ, Li W, Pan F et al (2006) Coupling between A-type horizontal cells is mediated by connexin 50 gap junctions in the rabbit retina. J Neurosci 26:11624–11636

    Article  PubMed  Google Scholar 

  • Pan F, Paul DL, Bloomfield SA, Völgyi B (2010) Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina. J Comp Neurol 518:911–927

    Article  PubMed Central  PubMed  Google Scholar 

  • Pérez De Sevilla Müller L, Dedek K, Janssen-Bienhold U et al (2010) Expression and modulation of connexin30.2, a novel gap junction protein in the mouse retina. Vis Neurosci 27:91–101

    Article  Google Scholar 

  • Postma FR, Keung J, Paul D, Massey SC (2010) Cone telodendria form the substrate for photoreceptor coupling. ARVO Meet Abstr 51:2046

    Google Scholar 

  • Raviola E, Gilula NB (1973) Gap junctions between photoreceptor cells in the vertebrate retina. Proc Natl Acad Sci U S A 70:1677–1681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ribelayga C, Cao Y, Mangel SC (2008) The circadian clock in the retina controls rod-cone coupling. Neuron 59:790–801

    Article  CAS  PubMed  Google Scholar 

  • Ribelayga C, Mangel SC (2010) Identification of a circadian clock-controlled neural pathway in the rabbit retina. PloS One 5:e11020

    Article  PubMed Central  PubMed  Google Scholar 

  • Schneeweis DM, Schnapf JL (1999) The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J Neurosci 19:1203–1216

    CAS  PubMed  Google Scholar 

  • Schubert T, Degen J, Willecke K et al (2005a) Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J Comp Neurol 485:191–201

    Article  CAS  PubMed  Google Scholar 

  • Schubert T, Maxeiner S, Krüger O et al (2005b) Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. J Comp Neurol 490:29–39

    Article  CAS  PubMed  Google Scholar 

  • Siebert AP, Ma Z, Grevet JD et al (2013) Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J Biol Chem 288:6140–6153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith RG, Freed MA, Sterling P (1986) Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. J Neurosci 6:3505–3517

    CAS  PubMed  Google Scholar 

  • Söhl G, Güldenagel M, Traub O, Willecke K (2000) Connexin expression in the retina. Brain Res Brain Res Rev 32:138–145

    Article  PubMed  Google Scholar 

  • Söhl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–80

    Article  PubMed  Google Scholar 

  • Stöhr H, Molday LL, Molday RS et al (2005) Membrane-associated guanylate kinase proteins MPP4 and MPP5 associate with Veli3 at distinct intercellular junctions of the neurosensory retina. J Comp Neurol 481:31–41

    Article  PubMed  Google Scholar 

  • Trümpler J, Dedek K, Schubert T et al (2008) Rod and cone contributions to horizontal cell light responses in the mouse retina. J Neurosci 28:6818–25

    Article  PubMed  Google Scholar 

  • Tsukamoto Y, Morigiwa K, Ueda M, Sterling P (2001) Microcircuits for night vision in mouse retina. J Neurosci 21:8616–8623

    CAS  PubMed  Google Scholar 

  • Völgyi B, Deans M, Paul D, Bloomfield S (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182–92

    Article  PubMed Central  PubMed  Google Scholar 

  • Voss FK, Ullrich F, Münch J et al (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638

    Article  CAS  PubMed  Google Scholar 

  • White TW, Goodenough DA, Paul DL (1998) Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol 143:815–825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu SM, Yang XL (1988) Electrical coupling between rods and cones in the tiger salamander retina. Proc Natl Acad Sci 85:275–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Wu SM (2004) Physiological properties of rod photoreceptor electrical coupling in the tiger salamander. J Physiol 564:849--862

Download references

Acknowledgments

We thank Bettina Kewitz and Susanne Wallenstein for excellent technical assistance and gratefully acknowledge the following funding: European Commission FP7 Grant RETICIRC HEALTH-F2-2009-223156 and MWK 99-20/08 (I/83 876) (to R.W.), Deutsche Forschungsgemeinschaft DE1154/5-1 (to K.D), and Deutsche Forschungsgemeinschaft JA854/1-2 and JA854/3-1 (to U.J.B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karin Dedek or Ulrike Janssen-Bienhold.

Additional information

Karin Dedek and Ulrike Janssen-Bienhold contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

RT-PCR with intron-spanning rhodopsin primers. PCRs confirmed successful reverse transcription of photoreceptor (PR) and mouse retinal (MR) cDNA and that none of the samples contained genomic DNA. The rhodopsin specific primer set revealed an amplicon with a predicted size of 332 bp on cDNA and 453 bp when the amplification is based on genomic DNA (gen). Negative controls (NC) were performed with water. (GIF 75 kb)

High resolution image (TIFF 849 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolte, P., Herrling, R., Dorgau, B. et al. Expression and Localization of Connexins in the Outer Retina of the Mouse. J Mol Neurosci 58, 178–192 (2016). https://doi.org/10.1007/s12031-015-0654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0654-y

Keywords

Navigation