Skip to main content
Log in

Protein Phosphatase 1γ Isoforms Linked Interactions in the Brain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Posttranslational protein modifications, in particular reversible protein phosphorylation, are important regulatory mechanisms involved in cellular signaling transduction pathways. Thousands of human proteins are phosphorylatable and the tight regulation of phosphorylation states is crucial for cell maintenance and development. Protein phosphorylation occurs primarily on serine, threonine, and tyrosine residues, through the antagonistic actions of protein kinases and phosphatases. The catalytic subunit of protein phosphatase 1 (PP1), a major Ser/Thr-phosphatase, associates with a large variety of regulatory subunits that define substrate specificity and determine specific cellular pathway responses. PP1 has been shown to bind to different proteins in the brain in order to execute key and differential functions. This work reports the identification of proteins expressed in the human brain that interact with PP1γ1 and PP1γ2 isoforms by the yeast two-hybrid method. An extensive search of PP1-binding motifs was performed for the proteins identified, revealing already known PP1 regulators but also novel interactors. Moreover, our results were integrated with the data of PP1γ interacting proteins from several public web databases, permitting the development of physical maps of the novel interactions. The PP1γ interactome thus obtained allowed for the identification of novel PP1 interacting proteins, supporting novel functions of PP1γ isoforms in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal-Mawal A, Paudel HK (2001) Neuronal Cdc2-like protein kinase (Cdk5/p25) is associated with protein phosphatase 1 and phosphorylates inhibitor-2. J Biol Chem 276:23712–23718

    Article  PubMed  CAS  Google Scholar 

  • Allen PB, Ouimet CC, Greengard P (1997) Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci U S A 94:9956–9961

    Article  PubMed  CAS  Google Scholar 

  • Allen PB, Zachariou V, Svenningsson P et al (2006) Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuroscience 140:897–911

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Sasin J, Bottini N et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  PubMed  CAS  Google Scholar 

  • Ayllon V, Cayla X, Garcia A, Fleischer A, Rebollo A (2002) The anti-apoptotic molecules Bcl-xL and Bcl-w target protein phosphatase 1alpha to Bad. Eur J Immunol 32:1847–1855

    Article  PubMed  CAS  Google Scholar 

  • Barbee SA, Estes PS, Cziko AM et al (2006) Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52:997–1009

    Article  PubMed  CAS  Google Scholar 

  • Barford D, Neel BG (1998) Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 6:249–254

    Article  PubMed  CAS  Google Scholar 

  • Barford D, Das AK, Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164

    Article  PubMed  CAS  Google Scholar 

  • Barsky A, Gardy JL, Hancock RE, Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042

    Article  PubMed  CAS  Google Scholar 

  • Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466:68–76

    Article  PubMed  CAS  Google Scholar 

  • Bergamaschi D, Samuels Y, Jin B, Duraisingham S, Crook T, Lu X (2004) ASPP1 and ASPP2: common activators of p53 family members. Mol Cell Biol 24:1341–1350

    Article  PubMed  CAS  Google Scholar 

  • Bielas SL, Serneo FF, Chechlacz M et al (2007) Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell 129:579–591

    Article  PubMed  CAS  Google Scholar 

  • Bollen M (2001) Combinatorial control of protein phosphatase-1. Trends Biochem Sci 26:426–431

    Article  PubMed  CAS  Google Scholar 

  • Bordelon JR, Smith Y, Nairn AC, Colbran RJ, Greengard P, Muly EC (2005) Differential localization of protein phosphatase-1alpha, beta and gamma1 isoforms in primate prefrontal cortex. Cereb Cortex 15:1928–1937

    Article  PubMed  Google Scholar 

  • Brown AM, Baucum AJ, Bass MA, Colbran RJ (2008) Association of protein phosphatase 1 gamma 1 with spinophilin suppresses phosphatase activity in a Parkinson disease model. J Biol Chem 283:14286–14294

    Article  PubMed  CAS  Google Scholar 

  • Buonomo SB, Wu Y, Ferguson D, de Lange T (2009) Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J Cell Biol 187:385–398

    Article  PubMed  CAS  Google Scholar 

  • Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39

    Article  PubMed  CAS  Google Scholar 

  • Charlton JJ, Allen PB, Psifogeorgou K et al (2008) Multiple actions of spinophilin regulate mu opioid receptor function. Neuron 58:238–247

    Article  PubMed  CAS  Google Scholar 

  • Claret FX, Hibi M, Dhut S, Toda T, Karin M (1996) A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383:453–457

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (2001) The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem FEBS 268:5001–5010

    Article  CAS  Google Scholar 

  • Cohen PT (2002) Protein phosphatase 1—targeted in many directions. J Cell Sci 115:241–256

    PubMed  CAS  Google Scholar 

  • Connor JH, Frederick D, Huang H et al (2000) Cellular mechanisms regulating protein phosphatase-1. A key functional interaction between inhibitor-2 and the type 1 protein phosphatase catalytic subunit. J Biol Chem 275:18670–18675

    Article  PubMed  CAS  Google Scholar 

  • da Cruz e Silva EF, da Cruz e Silva OA, Zaia CT, Greengard P (1995a) Inhibition of protein phosphatase 1 stimulates secretion of Alzheimer amyloid precursor protein. Mol Med 1:535–541

    PubMed  Google Scholar 

  • da Cruz e Silva EF, Fox CA, Ouimet CC, Gustafson E, Watson SJ, Greengard P (1995b) Differential expression of protein phosphatase 1 isoforms in mammalian brain. J Neurosci 15:3375–3389

    PubMed  Google Scholar 

  • del Castillo FJ, Cohen-Salmon M, Charollais A et al (2010) Consortin, a trans-Golgi network cargo receptor for the plasma membrane targeting and recycling of connexins. Hum Mol Genet 19:262–275

    Article  PubMed  CAS  Google Scholar 

  • Deng X-W, Dubiel W, Wei N et al (2000) Unified nomenclature for the COP9 signalosome and its subunits: an essential regulator of development. Trends Genet 16:202–203

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Chiang AS, Grady L et al (2003) The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol CB 13:286–296

    Article  CAS  Google Scholar 

  • Duchaine T, Wang HJ, Luo M, Steinberg SV, Nabi IR, DesGroseillers L (2000) A novel murine Staufen isoform modulates the RNA content of Staufen complexes. Mol Cell Biol 20:5592–5601

    Article  PubMed  CAS  Google Scholar 

  • Egloff MP, Johnson DF, Moorhead G, Cohen PT, Cohen P, Barford D (1997) Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J 16:1876–1887

    Article  PubMed  CAS  Google Scholar 

  • Erlich Y, Edvardson S, Hodges E et al (2011) Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res 21:658–664

    Article  PubMed  CAS  Google Scholar 

  • Esteves SL, Domingues SC, da Cruz ESOA, Fardilha M, da Cruz ESEF (2012) Protein phosphatase 1alpha interacting proteins in the human brain. OMICS: J Integr Biol 16:3–17

    Article  CAS  Google Scholar 

  • Fardilha M, Esteves SL, Korrodi-Gregorio L, da Cruz e Silva OA, da Cruz e Silva FF (2010) The physiological relevance of protein phosphatase 1 and its interacting proteins to health and disease. Curr Med Chem 17:3996–4017

    Article  PubMed  CAS  Google Scholar 

  • Fardilha M, Esteves SL, Korrodi-Gregorio L, Pelech S, da Cruz ESOA, da Cruz ESE (2011a) Protein phosphatase 1 complexes modulate sperm motility and present novel targets for male infertility. Mol Hum Reprod 17(8):466–477

    Article  PubMed  CAS  Google Scholar 

  • Fardilha M, Esteves SL, Korrodi-Gregorio L et al (2011b) Identification of the human testis protein phosphatase 1 interactome. Biochem Pharmacol 82:1403–1415

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Yan Z, Ferreira A et al (2000) Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci U S A 97:9287–9292

    Article  PubMed  CAS  Google Scholar 

  • Ferrandon D, Elphick L, Nusslein-Volhard C, St JD (1994) Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79:1221–1232

    Article  PubMed  CAS  Google Scholar 

  • Ferrar T, Chamousset D, De Wever V, Nimick M, Andersen J, Trinkle-Mulcahy L, Moorhead G (2012) Taperin (c9orf75), a mutated gene in nonsyndromic deafness, encodes a vertebrate specific, nuclear localized protein phosphatase one alpha (PP1α) docking protein. Biol Open 1:128–139

    Google Scholar 

  • Gagnon KB, England R, Diehl L, Delpire E (2007) Apoptosis-associated tyrosine kinase scaffolding of protein phosphatase 1 and SPAK reveals a novel pathway for Na-K-2C1 cotransporter regulation. Am J Physiol Cell Physiol 292:C1809–C1815

    Article  PubMed  CAS  Google Scholar 

  • Gallego M, Virshup DM (2005) Protein serine/threonine phosphatases: life, death, and sleeping. Curr Opin Cell Biol 17:197–202

    Article  PubMed  CAS  Google Scholar 

  • Gandhi S, Muqit MM, Stanyer L et al (2006) PINK1 protein in normal human brain and Parkinson's disease. Brain 129:1720–1731

    Article  PubMed  CAS  Google Scholar 

  • Gandy S, Greengard P (1994) Regulated cleavage of the Alzheimer amyloid precursor protein: molecular and cellular basis. Biochimie 76:300–303

    Article  PubMed  CAS  Google Scholar 

  • Gaozza E, Baker SJ, Vora RK, Reddy EP (1997) AATYK: a novel tyrosine kinase induced during growth arrest and apoptosis of myeloid cells. Oncogene 15:3127–3135

    Article  PubMed  CAS  Google Scholar 

  • Genoux D, Haditsch U, Knobloch M, Michalon A, Storm D, Mansuy IM (2002) Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418:970–975

    Article  PubMed  CAS  Google Scholar 

  • Gibbons JA, Weiser DC, Shenolikar S (2005) Importance of a surface hydrophobic pocket on protein phosphatase-1 catalytic subunit in recognizing cellular regulators. J Biol Chem 280:15903–15911

    Article  PubMed  CAS  Google Scholar 

  • Gingras S, Pelletier S, Boyd K, Ihle JN (2007) Characterization of a family of novel cysteine- serine-rich nuclear proteins (CSRNP). PLoS One 2:e808

    Article  PubMed  CAS  Google Scholar 

  • Godet AN, Guergnon J, Maire V, Croset A, Garcia A (2010) The combinatorial PP1-binding consensus Motif (R/K)x( (0,1))V/IxFxx(R/K)x(R/K) is a new apoptotic signature. PLoS One 5:e9981

    Article  PubMed  CAS  Google Scholar 

  • Goodchild RE, Dauer WT (2005) The AAA + protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J Cell Biol 168:855–862

    Article  PubMed  CAS  Google Scholar 

  • Graff J, Koshibu K, Jouvenceau A, Dutar P, Mansuy IM (2010) Protein phosphatase 1-dependent transcriptional programs for long-term memory and plasticity. Learn Mem 17:355–363

    Article  PubMed  CAS  Google Scholar 

  • Grossman SD, Hsieh-Wilson LC, Allen PB, Nairn AC, Greengard P (2002) The actin-binding domain of spinophilin is necessary and sufficient for targeting to dendritic spines. Neuromol Med 2:61–69

    Article  CAS  Google Scholar 

  • Hamdan FF, Gauthier J, Araki Y et al (2011) Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 88:306–316

    Article  PubMed  CAS  Google Scholar 

  • Hantschel O, Superti-Furga G (2004) Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 5:33–44

    Article  PubMed  CAS  Google Scholar 

  • Helps NR, Barker HM, Elledge SJ, Cohen PT (1995) Protein phosphatase 1 interacts with p53BP2, a protein which binds to the tumour suppressor p53. FEBS Lett 377:295–300

    Article  PubMed  CAS  Google Scholar 

  • Hendrickx A, Beullens M, Ceulemans H et al (2009) Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol 16:365–371

    Article  PubMed  CAS  Google Scholar 

  • Heroes E, Lesage B, Görnemann J, Beullens M, Van Meervelt L, Bollen M (2012) The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J. doi:10.1111/j.1742-4658.2012.08547.x

  • Hsieh-Wilson LC, Allen PB, Watanabe T, Nairn AC, Greengard P (1999) Characterization of the neuronal targeting protein spinophilin and its interactions with protein phosphatase-1. Biochemistry 38:4365–4373

    Article  PubMed  CAS  Google Scholar 

  • Huang HB, Horiuchi A, Watanabe T et al (1999) Characterization of the inhibition of protein phosphatase-1 by DARPP-32 and inhibitor-2. J Biol Chem 274:7870–7878

    Article  PubMed  CAS  Google Scholar 

  • Hurley TD, Yang J, Zhang L et al (2007) Structural basis for regulation of protein phosphatase 1 by inhibitor-2. J Biol Chem 282(39):28874–28883

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro H, Tsunoda T, Tanaka T, Fujii Y, Nakamura Y, Furukawa Y (2001) Identification of AXUD1, a novel human gene induced by AXIN1 and its reduced expression in human carcinomas of the lung, liver, colon and kidney. Oncogene 20:5062–5066

    Article  PubMed  CAS  Google Scholar 

  • Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2:17–25

    Article  PubMed  CAS  Google Scholar 

  • Jourdain P, Fukunaga K, Muller D (2003) Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J Neurosci Off J Soc Neurosci 23:10645–10649

    CAS  Google Scholar 

  • Jungwirth M, Dear ML, Brown P, Holbrook K, Goodchild R (2010) Relative tissue expression of homologous torsinB correlates with the neuronal specific importance of DYT1 dystonia-associated torsinA. Hum Mol Genet 19:888–900

    Article  PubMed  CAS  Google Scholar 

  • Kiebler MA, DesGroseillers L (2000) Molecular insights into mRNA transport and local translation in the mammalian nervous system. Neuron 25:19–28

    Article  PubMed  CAS  Google Scholar 

  • Kim BC, Lee HJ, Park SH et al (2004) Jab1/CSN5, a component of the COP9 signalosome, regulates transforming growth factor beta signaling by binding to Smad7 and promoting its degradation. Mol Cell Biol 24:2251–2262

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Goodman J, Anderson KV, Niswander L (2007) Phactr4 regulates neural tube and optic fissure closure by controlling PP1-, Rb-, and E2F1-regulated cell-cycle progression. Dev Cell 13:87–102

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Park J, Kim S et al (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377:975–980

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Zearfoss NR, Etkin LD (2002) Mechanisms of subcellular mRNA localization. Cell 108:533–544

    Article  PubMed  CAS  Google Scholar 

  • Koshibu K, Graff J, Beullens M et al (2009) Protein phosphatase 1 regulates the histone code for long-term memory. J Neurosci Off J Soc Neurosci 29:13079–13089

    Article  CAS  Google Scholar 

  • Kwok SF, Solano R, Tsuge T et al (1998) Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell 10:1779–1790

    PubMed  CAS  Google Scholar 

  • Lakshmana MK, Yoon IS, Chen E, Bianchi E, Koo EH, Kang DE (2009) Novel role of RanBP9 in BACE1 processing of amyloid precursor protein and amyloid beta peptide generation. J Biol Chem 284:11863–11872

    Article  PubMed  CAS  Google Scholar 

  • Lakshmana MK, Hayes CD, Bennett SP, Bianchi E, Reddy KM, Koo EH, Kang DE (2012) Role of RanBP9 on amyloidogenic processing of APP and synaptic protein levels in the mouse brain. FASEB J Off Publ Fed Am Soc Exp Biol 26:2072–2083

    Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lane KB, Machado RD, Pauciulo MW et al (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26:81–84

    Article  PubMed  CAS  Google Scholar 

  • Lasko P (1999) RNA sorting in Drosophila oocytes and embryos. FASEB J Off Publ Fed Am Soc Exp Biol 13:421–433

    CAS  Google Scholar 

  • Lee JT Jr, McCubrey JA (2002) The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leuk Off J Leuk Soc Am Leuk Res Fund UK 16:486–507

    Article  CAS  Google Scholar 

  • Li Y, Pohl E, Boulouiz R et al (2010) Mutations in TPRN cause a progressive form of autosomal-recessive nonsyndromic hearing loss. Am J Hum Genet 86:479–484

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Buckler ES, Muse SV, Walker JC (1999) Molecular evolution of type 1 serine/threonine protein phosphatases. Mol Phylogenet Evol 12:57–66

    Article  PubMed  CAS  Google Scholar 

  • Lin TH, Tsai PC, Liu HT et al (2005) Characterization of the protein phosphatase 1-binding motifs of inhibitor-2 and DARPP-32 by surface plasmon resonance. J Biochem (Tokyo) 138:697–700

    Article  CAS  Google Scholar 

  • Machado RD, Aldred MA, James V et al (2006) Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat 27:121–132

    Article  PubMed  CAS  Google Scholar 

  • MacMillan LB, Bass MA, Cheng N et al (1999) Brain actin-associated protein phosphatase 1 holoenzymes containing spinophilin, neurabin, and selected catalytic subunit isoforms. J Biol Chem 274:35845–35854

    Article  PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  • McCubrey JA, Lee JT, Steelman LS et al (2001) Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect Prev 25:375–393

    PubMed  CAS  Google Scholar 

  • Meiselbach H, Sticht H, Enz R (2006) Structural analysis of the protein phosphatase 1 docking motif: molecular description of binding specificities identifies interacting proteins. Chem Biol 13:49–59

    Article  PubMed  CAS  Google Scholar 

  • Monshausen M, Rehbein M, Richter D, Kindler S (2002) The RNA-binding protein Staufen from rat brain interacts with protein phosphatase-1. J Neurochem 81:557–564

    Article  PubMed  CAS  Google Scholar 

  • Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemee A (2007) Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 8:234–244

    Article  PubMed  CAS  Google Scholar 

  • Moorhead GB, Trinkle-Mulcahy L, Nimick M et al (2008) Displacement affinity chromatography of protein phosphatase one (PP1) complexes. BMC Biochem 9:28

    Article  PubMed  CAS  Google Scholar 

  • Murrin LC, Talbot JN (2007) RanBPM, a scaffolding protein in the immune and nervous systems. J NeuroImmune Pharmacol Off J Soc NeuroImmune Pharmacol 2:290–295

    Article  Google Scholar 

  • Nagase T, Kikuno R, Ishikawa KI, Hirosawa M, Ohara O (2000) Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro. DNA Res 7:65–73

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Masuda H, Horii J et al (1998) When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to gamma-tubulin. J Cell Biol 143:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Narendra DP, Youle RJ (2011) Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal 14:1929–1938

    Article  PubMed  CAS  Google Scholar 

  • Neumann J (2002) Altered phosphatase activity in heart failure, influence on Ca2+ movement. Basic Res Cardiol 97(Suppl 1):I91–I95

    PubMed  Google Scholar 

  • Nohno T, Ishikawa T, Saito T et al (1995) Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. J Biol Chem 270:22522–22526

    Article  PubMed  CAS  Google Scholar 

  • Ohta E, Misumi Y, Sohda M, Fujiwara T, Yano A, Ikehara Y (2003) Identification and characterization of GCP16, a novel acylated Golgi protein that interacts with GCP170. J Biol Chem 278:51957–51967

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N (1995) The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81:769–780

    Article  PubMed  CAS  Google Scholar 

  • Oliver CJ, Terry-Lorenzo RT, Elliott E et al (2002) Targeting protein phosphatase 1 (PP1) to the actin cytoskeleton: the neurabin I/PP1 complex regulates cell morphology. Mol Cell Biol 22:4690–4701

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  PubMed  CAS  Google Scholar 

  • Ouimet CC, da Cruz e Silva EF, Greengard P (1995) The alpha and gamma 1 isoforms of protein phosphatase 1 are highly and specifically concentrated in dendritic spines. Proc Natl Acad Sci U S A 92:3396–3400

    Article  PubMed  CAS  Google Scholar 

  • Ozelius LJ, Hewett JW, Page CE et al (1997) The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 17:40–48

    Article  PubMed  CAS  Google Scholar 

  • Ozelius LJ, Page CE, Klein C et al (1999) The TOR1A (DYT1) gene family and its role in early onset torsion dystonia. Genomics 62:377–384

    Article  PubMed  CAS  Google Scholar 

  • Raghunath M, Patti R, Bannerman P et al (2000) A novel kinase, AATYK induces and promotes neuronal differentiation in a human neuroblastoma (SH-SY5Y) cell line. Brain Res Mol Brain Res 77:151–162

    Article  PubMed  CAS  Google Scholar 

  • Rehman AU, Morell RJ, Belyantseva IA et al (2010) Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am J Hum Genet 86:378–388

    Article  PubMed  CAS  Google Scholar 

  • Riviere JB, Ramalingam S, Lavastre V et al (2011) KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am J Hum Genet 89:219–230

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig BL, Imamura T, Okadome T et al (1995) Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci U S A 92:7632–7636

    Article  PubMed  CAS  Google Scholar 

  • Runo JR, Vnencak-Jones CL, Prince M et al (2003) Pulmonary veno-occlusive disease caused by an inherited mutation in bone morphogenetic protein receptor II. Am J Respir Crit Care Med 167:889–894

    Article  PubMed  Google Scholar 

  • Samuels-Lev Y, O'Connor DJ, Bergamaschi D et al (2001) ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8:781–794

    Article  PubMed  CAS  Google Scholar 

  • Santos M (2009) Validation of LAP1B as a novel protein phosphatase 1 regulator. PhD thesis. Biology Department, University of Aveiro, Portugal

  • Santra M, Santra S, Roberts C, Zhang RL, Chopp M (2009) Doublecortin induces mitotic microtubule catastrophe and inhibits glioma cell invasion. J Neurochem 108:231–245

    Article  PubMed  CAS  Google Scholar 

  • Satoh A, Nakanishi H, Obaishi H et al (1998) Neurabin-II/spinophilin. An actin filament-binding protein with one pdz domain localized at cadherin-based cell-cell adhesion sites. J Biol Chem 273:3470–3475

    Article  PubMed  CAS  Google Scholar 

  • Schillace RV, Scott JD (1999) Association of the type 1 protein phosphatase PP1 with the A-kinase anchoring protein AKAP220. Curr Biol CB 9:321–324

    Article  CAS  Google Scholar 

  • Seeger M, Kraft R, Ferrell K et al (1998) A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J Off Publ Fed Am Soc Exp Biol 12:469–478

    CAS  Google Scholar 

  • Shackleford TJ, Claret FX (2010) JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div 5:26

    Article  PubMed  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  • Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484

    Article  PubMed  CAS  Google Scholar 

  • Silverman J, Takai H, Buonomo SB, Eisenhaber F, de Lange T (2004) Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev 18:2108–2119

    Article  PubMed  CAS  Google Scholar 

  • Silvestri L, Caputo V, Bellacchio E et al (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14:3477–3492

    Article  PubMed  CAS  Google Scholar 

  • Sridhar R, Hanson-Painton O, Cooper DR (2000) Protein kinases as therapeutic targets. Pharm Res 17:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Strack S, Kini S, Ebner FF, Wadzinski BE, Colbran RJ (1999) Differential cellular and subcellular localization of protein phosphatase 1 isoforms in brain. J Comp Neurol 413:373–384

    Article  PubMed  CAS  Google Scholar 

  • Swarthout JT, Lobo S, Farh L et al (2005) DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J Biol Chem 280:31141–31148

    Article  PubMed  CAS  Google Scholar 

  • Takizawa N, Mizuno Y, Ito Y, Kikuchi K (1994) Tissue distribution of isoforms of type-1 protein phosphatase PP1 in mouse tissues and its diabetic alterations. J Biochem 116:411–415

    PubMed  CAS  Google Scholar 

  • Talati M, West J, Blackwell TR, Loyd JE, Meyrick B (2010) BMPR2 mutation alters the lung macrophage endothelin-1 cascade in a mouse model and patients with heritable pulmonary artery hypertension. Am J Physiol Lung Cell Mol Physiol 299:L363–L373

    Article  PubMed  CAS  Google Scholar 

  • Terrak M, Kerff F, Langsetmo K, Tao T, Dominguez R (2004) Structural basis of protein phosphatase 1 regulation. Nature 429:780–784

    Article  PubMed  CAS  Google Scholar 

  • Terry-Lorenzo RT, Elliot E, Weiser DC, Prickett TD, Brautigan DL, Shenolikar S (2002) Neurabins recruit protein phosphatase-1 and inhibitor-2 to the actin cytoskeleton. J Biol Chem 277:46535–46543

    Article  PubMed  CAS  Google Scholar 

  • Terry-Lorenzo RT, Roadcap DW, Otsuka T et al (2005) Neurabin/protein phosphatase-1 complex regulates dendritic spine morphogenesis and maturation. Mol Biol Cell 16:2349–2362

    Article  PubMed  CAS  Google Scholar 

  • Tomomura M, Furuichi T (2005) Apoptosis-associated tyrosine kinase (AATYK) has differential Ca2+-dependent phosphorylation states in response to survival and apoptotic conditions in cerebellar granule cells. J Biol Chem 280:35157–35163

    Article  PubMed  CAS  Google Scholar 

  • Tomomura M, Fernandez-Gonzales A, Yano R, Yuzaki M (2001) Characterization of the apoptosis-associated tyrosine kinase (AATYK) expressed in the CNS. Oncogene 20:1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Tran HT, Ulke A, Morrice N, Johannes CJ, Moorhead GB (2004) Proteomic characterization of protein phosphatase complexes of the mammalian nucleus. Mol Cell Proteomics MCP 3:257–265

    Article  CAS  Google Scholar 

  • Trinkle-Mulcahy L, Andersen J, Lam YW, Moorhead G, Mann M, Lamond AI (2006) Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability. J Cell Biol 172:679–692

    Article  PubMed  CAS  Google Scholar 

  • Ulke-Lemee A, Trinkle-Mulcahy L, Chaulk S et al (2007) The nuclear PP1 interacting protein ZAP3 (ZAP) is a putative nucleoside kinase that complexes with SAM68, CIA, NF110/45, and HNRNP-G. Biochim Biophys Acta 1774:1339–1350

    Article  PubMed  CAS  Google Scholar 

  • Vander Heyden AB, Naismith TV, Snapp EL, Hodzic D, Hanson PI (2009) LULL1 retargets TorsinA to the nuclear envelope revealing an activity that is impaired by the DYT1 dystonia mutation. Mol Biol Cell 20:2661–2672

    Article  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33:537–545

    Article  PubMed  CAS  Google Scholar 

  • Wakula P, Beullens M, Ceulemans H, Stalmans W, Bollen M (2003) Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. J Biol Chem 278:18817–18823

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhao A, Chen L et al (2009) Human RIF1 encodes an anti-apoptotic factor required for DNA repair. Carcinogenesis 30:1314–1319

    Article  PubMed  CAS  Google Scholar 

  • Wolf DA, Zhou C, Wee S (2003) The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nat Cell Biol 5:1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Woo JA, Roh SE, Lakshmana MK, Kang DE (2012) Pivotal role of RanBP9 in integrin-dependent focal adhesion signaling and assembly. FASEB J Off Publ Fed Am Soc Exp Biol 26:1672–1681

    Google Scholar 

  • Wu G, Feng X, Stein L (2010) A human functional protein interaction network and its application to cancer data analysis. Genome Biol 11:R53

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Blackburn EH (2004) Human Rif1 protein binds aberrant telomeres and aligns along anaphase midzone microtubules. J Cell Biol 167:819–830

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Hsieh-Wilson L, Feng J et al (1999) Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat Neurosci 2:13–17

    Article  PubMed  CAS  Google Scholar 

  • Yonekawa Y, Harada A, Okada Y et al (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol 141:431–441

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Bai G, Shima M, Zhao S, Nagao M, Lee EY (1993a) Expression and characterization of rat protein phosphatases-1 alpha, -1 gamma 1, -1 gamma 2, and −1 delta. Arch Biochem Biophys 303:402–406

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhao S, Deans-Zirattu S, Bai G, Lee EY (1993b) Mutagenesis of the catalytic subunit of rabbit muscle protein phosphatase-1. Mol Cell Biochem 127–128:113–119

    Article  PubMed  Google Scholar 

  • Zhang Y, Kim TH, Niswander L (2012) Phactr4 regulates directional migration of enteric neural crest through PP1, integrin signaling, and cofilin activity. Genes Dev 26:69–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre for Cell Biology of the University of Aveiro, by grants from Fundação para a Ciência e Tecnologia of the Portuguese Ministry of Science and Higher Education to SLCE (SFRH/BD/41751/2007), LKG (SFRM/BD/42334/2007), SCD (SFRH/BD/21559/2005), and OBCS (POCTI/BIA-BCM/58469/2004) and from the European project to EFCS cNEUPRO (LSHM-CT-2007-037950). This paper is dedicated to the memory of Edgar F. da Cruz e Silva, the former director of the Center for Cell Biology at the University of Aveiro, who first introduced protein phosphatase interactome research in Portugal.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida Fardilha.

Additional information

Edgar F. da Cruz e Silva passed away on March 2, 2010.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteves, S.L.C., Korrodi-Gregório, L., Cotrim, C.Z. et al. Protein Phosphatase 1γ Isoforms Linked Interactions in the Brain. J Mol Neurosci 50, 179–197 (2013). https://doi.org/10.1007/s12031-012-9902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9902-6

Keywords

Navigation