Skip to main content
Log in

Synaptic Vesicle Exocytosis in Hippocampal Synaptosomes Correlates Directly with Total Mitochondrial Volume

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Synaptic plasticity in many regions of the central nervous system leads to the continuous adjustment of synaptic strength, which is essential for learning and memory. In this study, we show by visualizing synaptic vesicle release in mouse hippocampal synaptosomes that presynaptic mitochondria and, specifically, their capacities for ATP production are essential determinants of synaptic vesicle exocytosis and its magnitude. Total internal reflection microscopy of FM1-43 loaded hippocampal synaptosomes showed that inhibition of mitochondrial oxidative phosphorylation reduces evoked synaptic release. This reduction was accompanied by a substantial drop in synaptosomal ATP levels. However, cytosolic calcium influx was not affected. Structural characterization of stimulated hippocampal synaptosomes revealed that higher total presynaptic mitochondrial volumes were consistently associated with higher levels of exocytosis. Thus, synaptic vesicle release is linked to the presynaptic ability to regenerate ATP, which itself is a utility of mitochondrial density and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cer Blood Flow Met 21:1133–1145

    Article  CAS  Google Scholar 

  • Bekkers JM, Richerson GB, Stevens CF (1990) Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. PNAS 87:5359–5362

    Article  PubMed  CAS  Google Scholar 

  • Billups B, Forsythe ID (2002) Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22:5840–5847

    PubMed  CAS  Google Scholar 

  • Breukel AIM, Besselsen E, Ghijsen WEJM (1997) Synaptosomes: a model system to study release of multiple classes of neurotransmitters. Methods Mol Biol 72:33–47

    PubMed  CAS  Google Scholar 

  • David G, Barrett EF (2003) Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol 548:425–438

    Article  PubMed  CAS  Google Scholar 

  • Dhar-Chowdhury P, Malester B, Rajacic P, Coetzee WA (2007) The regulation of ion channels and transporters by glycolytically derived ATP. Cell Mol Life Sci 64:3069–3083

    Article  PubMed  CAS  Google Scholar 

  • Dunant Y, Israël M (1998) In vitro reconstitution of neurotransmitter release. Neurochem Res 23:709–718

    Article  PubMed  CAS  Google Scholar 

  • Edeling MA, Smith C, Owen D (2006) Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7:32–44

    Article  PubMed  CAS  Google Scholar 

  • Enoki R, Hu YL, Hamilton D, Fine A (2009) Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis. Neuron 62:242–253

    Article  PubMed  CAS  Google Scholar 

  • Franks KM, Isaacson JS (2005) Synapse-specific downregulation of NMDA receptors by early experience: a critical period for plasticity of sensory input to olfactory cortex. Neuron 47:101–114

    Article  PubMed  CAS  Google Scholar 

  • Frerking M, Borges S, Wilson M (1995) Variation in GABA mini amplitude is the consequence of variation in transmitter concentration. Neuron 15:885–895

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger R (1998) ATP and the late steps in calcium-dependent exocytosis at a ribbon synapse. J Gen Physiol 111:225–241

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger R (2001) ATP is required at an early step in compensatory endocytosis in synaptic terminals. J Neurosci 21:6467–6474

    PubMed  CAS  Google Scholar 

  • Heidelberger R, Sterling P, Matthews G (2002) Roles of ATP in synaptic vesicle pool depletion and replenishment. J Neurophysiol 88:97–106

    Article  Google Scholar 

  • Hollenbeck PJ (1996) The pattern and mechanism of mitochondrial transport in axons. Front Biosci 1:d91–d102

    PubMed  CAS  Google Scholar 

  • Ivannikov MV, Sugimori M, Llinás RR (2010) Calcium clearance and its energy requirements in cerebellar neurons. Cell Calcium 47:507–513

    Article  PubMed  CAS  Google Scholar 

  • Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137–148

    Article  PubMed  CAS  Google Scholar 

  • Kuromi H, Honda A, Kidokoro Y (2004) Ca2+ influx through distinct routes controls exocytosis and endocytosis at Drosophila presynaptic terminals. Neuron 41:101–111

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Flockerzi V, Hofmann F (1997) Regional expression and cellular localization of the 1 alpha and beta subunit of high voltage-activated calcium channels in rat brain. J Neurosci 17:1339–1349

    PubMed  CAS  Google Scholar 

  • Morgan JR, Prasad K, Jin S, Augustine GJ, Lafer EM (2001) Uncoating of clathrin-coated vesicles in presynaptic terminals: roles for Hsc70 and auxilin. Neuron 32:289–300

    Article  PubMed  CAS  Google Scholar 

  • O'Connor DH, Wittenberg GM, Wang SS (2005) Graded bidirectional synaptic plasticity is composed of switch-like unitary events. PNAS 102:9679–9684

    Article  PubMed  Google Scholar 

  • Perkins, G.A., Ellisman, M.H. (2007). Mitochondrial architecture and heterogeneity. Springer, Berlin/Heidelberg

  • Rao VR, Finkbeiner S (2007) NMDA and AMPA receptors: old channels, new tricks. Trends Neurosci 30:284–291

    Article  PubMed  CAS  Google Scholar 

  • Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ (2003) Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 23:7881–7888

    PubMed  CAS  Google Scholar 

  • Rizzuto, R., Duchen, M.R., Pozzan, T. (2004). Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004(215):re1

  • Robbe D, Alonso G, Chaumont S, Bockaert J, Manzoni OJ (2002) Role of p/q-Ca2+ channels in metabotropic glutamate receptor 2/3-dependent presynaptic long-term depression at nucleus accumbens synapses. J Neurosci 22:4346–4356

    PubMed  CAS  Google Scholar 

  • Rouze NC, Schwartz EA (1998) Continuous and transient vesicle cycling at a ribbon synapse. J Neurosci 18:8614–8624

    PubMed  CAS  Google Scholar 

  • Sakaba T, Neher E (2003) Involvement of actin polymerization in vesicle recruitment at the calyx of held synapse. J Neurosci 23:837–846

    PubMed  CAS  Google Scholar 

  • Sankaranarayanan S, Ryan TA (2000) Real-time measurements of vesicle SNARE recycling in synapses of the central nervous system. Nat Cell Biol 2:197–204

    Article  PubMed  CAS  Google Scholar 

  • Serulle Y, Sugimori M, Llinás RR (2007) Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. PNAS 104:1697–1702

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GM, Harris KM (1998) Three-dimensional structure and composition of CA3-->CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J Neurosci 18:8300–8310

    PubMed  CAS  Google Scholar 

  • Shupliakov O, Storm-Mathisen J, Ottersen OP, Brodin L (1997) Glial and neuronal glutamine pools at glutamatergic synapses with distinct properties. Neuroscience 77:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Soldati T, Schliwa M (2006) Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7:897–908

    Article  PubMed  CAS  Google Scholar 

  • Stotz SC, Zamponi GW (2001) Structural determinants of fast inactivation of high voltage-activated Ca2+ channels. Trends Neurosci 24:176–181

    Article  PubMed  CAS  Google Scholar 

  • Toomre D, Manstein DJ (2001) Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 11:298–303

    Article  PubMed  CAS  Google Scholar 

  • Waters J, Smith SJ (2003) Mitochondria and release at hippocampal synapses. Pflugers Arch 447:363–370

    Article  PubMed  CAS  Google Scholar 

  • Xu-Friedman MA, Harris KM, Regehr WG (2001) Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 21:6666–6672

    PubMed  CAS  Google Scholar 

  • Zinsmaier KE, Bronk P (2001) Molecular chaperones and the regulation of neurotransmitter exocytosis. Biochem Pharmacol 62:1–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant NS13742 (to R.R.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim V. Ivannikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivannikov, M.V., Sugimori, M. & Llinás, R.R. Synaptic Vesicle Exocytosis in Hippocampal Synaptosomes Correlates Directly with Total Mitochondrial Volume. J Mol Neurosci 49, 223–230 (2013). https://doi.org/10.1007/s12031-012-9848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9848-8

Keywords

Navigation