Skip to main content
Log in

Neurochemical Monitoring of Therapeutic Effects in Large Human MCA Infarction

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background and purpose

Cerebral microdialysis is an invasive monitoring tool allowing analysis of various substances derived from the extracellular space in brain tissue such as glutamate, glycerol, lactate, and pyruvate. In order to assess the potential effects of hemicraniectomy, hypothermia and conservative therapy on these substances, we used neurochemical monitoring with microdialysis in large human stroke patients.

Methods

This is an open, prospective observational study in 24 patients with large MCA infarction undergoing either hypothermia (33°C), hemicraniectomy, or maximum conservative therapy. Microdialysis probe placement was aimed at the peri-infarct tissue within 24 h after stroke onset. Glutamate, glycerol, pyruvate, and lactate were analyzed every 60 min. Measurements of two consecutive days were pooled for statistical analysis.

Results

Average glutamate concentrations in patients treated with hemicraniectomy (5.3 ± 0.5 μmol/l, P < 0.0001; n = 6) and hypothermia (14.5 ± 3.6 μmol/l, P < 0.0001; n = 14) were significantly lower than in conservatively treated patients (68.3 ± 5.2 μmol/l; n = 4). Glycerol concentration was significantly lower in patients treated by hypothermia (111 ± 17 μmol/l; P < 0.0001) and hemicraniectomy (138 ± 8 μmol/l; P < 0.0001) as compared to conservatively treated patients with 612 ± 27 μmol/l. The lactate–pyruvate ratio was significantly lower both in the hypothermia (16.2 ± 3.3) and hemicraniectomy groups (31.3 ± 1.5) than in the conservative treatment group (56 ± 2.9).

Conclusion

Microdialysis allows bed-side monitoring of neuroprotective effects of stroke rescue therapies such as hypothermia and hemicraniectomy. Rescue of peri-infarct tissue and/or prevention of secondary ischemic injury could be associated with a lower mortality in invasively treated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R. ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol. 1996;53(4):309–15.

    PubMed  CAS  Google Scholar 

  2. Schwab S, Schwarz S, Spranger M, Keller E, Bertram M, Hacke W. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke. 1998;29(12):2461–6.

    PubMed  CAS  Google Scholar 

  3. Schwab S, Georgiadis D, Berrouschot J, Schellinger PD, Graffagnino C, Mayer SA. Feasibility and safety of moderate hypothermia after massive hemispheric infarction. Stroke. 2001;32(9):2033–5.

    Article  PubMed  CAS  Google Scholar 

  4. Schwab S, Steiner T, Aschoff A, Schwarz S, Steiner HH, Jansen O, et al. Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke. 1998;29(9):1888–93.

    PubMed  CAS  Google Scholar 

  5. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6(3):215–22.

    Article  PubMed  Google Scholar 

  6. Hillered L, Persson L, Ponten U, Ungerstedt U. Neurometabolic monitoring of the ischaemic human brain using microdialysis. Acta Neurochir (Wien). 1990;102(3–4):91–7.

    Article  CAS  Google Scholar 

  7. Persson L, Valtysson J, Enblad P, Warme PE, Cesarini K, Lewen A, et al. Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg. 1996;84(4):606–16.

    Article  PubMed  CAS  Google Scholar 

  8. Landolt H, Langemann H, Mendelowitsch A, Gratzl O. Neurochemical monitoring and on-line pH measurements using brain microdialysis in patients in intensive care. Acta Neurochir Suppl (Wien). 1994;60:475–8.

    CAS  Google Scholar 

  9. Kanthan R, Shuaib A, Griebel R, Miyashita H. Intracerebral human microdialysis. In vivo study of an acute focal ischemic model of the human brain. Stroke. 1995;26(5):870–3.

    PubMed  CAS  Google Scholar 

  10. Mendelowitsch A, Langemann H, Alessandri B, Kanner A, Landolt H, Gratzl O. Microdialytic monitoring of the cortex during neurovascular surgery. Acta Neurochir Suppl (Wien). 1996;67:48–52.

    CAS  Google Scholar 

  11. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47(3):701–9; discussion 709–10.

    Article  PubMed  CAS  Google Scholar 

  12. Nilsson OG, Brandt L, Ungerstedt U, Saveland H. Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery. 1999;45(5):1176–84; discussion 1175–84.

    Article  PubMed  CAS  Google Scholar 

  13. Hutchinson PJ, al-Rawi PG, O’Connell MT, Gupta AK, Maskell LB, Hutchinson DB, et al. Head injury monitoring using cerebral microdialysis and Paratrend multiparameter sensors. Zentralbl Neurochir. 2000;61(2):88–94.

    Article  PubMed  CAS  Google Scholar 

  14. Berger C, Schabitz WR, Georgiadis D, Steiner T, Aschoff A, Schwab S. Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke. 2002;33(2):519–24.

    Article  PubMed  CAS  Google Scholar 

  15. Schneweis S, Grond M, Staub F, Brinker G, Neveling M, Dohmen C, et al. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke. 2001;32(8):1863–7.

    PubMed  CAS  Google Scholar 

  16. Dohmen C, Bosche B, Graf R, Reithmeier T, Ernestus RI, Brinker G, et al. Identification and clinical impact of impaired cerebrovascular autoregulation in patients with malignant middle cerebral artery infarction. Stroke. 2007;38(1):56–61.

    Article  PubMed  Google Scholar 

  17. Bullock R, Zauner A, Woodward J, Young HF. Massive persistent release of excitatory amino acids following human occlusive stroke. Stroke. 1995;26(11):2187–9.

    PubMed  CAS  Google Scholar 

  18. Persson L, Hillered L. Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg. 1992;76(1):72–80.

    PubMed  CAS  Google Scholar 

  19. Nilsson OG, Saveland H, Boris-Moller F, Brandt L, Wieloch T. Increased levels of glutamate in patients with subarachnoid haemorrhage as measured by intracerebral microdialysis. Acta Neurochir Suppl (Wien). 1996;67:45–7.

    CAS  Google Scholar 

  20. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989;20(7):904–10.

    PubMed  CAS  Google Scholar 

  21. Nakashima K, Todd MM. Effects of hypothermia on the rate of excitatory amino acid release after ischemic depolarization. Stroke. 1996;27(5):913–8.

    PubMed  CAS  Google Scholar 

  22. Nakashima K, Todd MM. Effects of hypothermia, pentobarbital, and isoflurane on postdepolarization amino acid release during complete global cerebral ischemia. Anesthesiology. 1996;85(1):161–8.

    Article  PubMed  CAS  Google Scholar 

  23. Shuaib A, Kanthan R, Goplen G, Griebel R, el-Azzouni H, Miyashita H, et al. In-vivo microdialysis study of extracellular glutamate response to temperature variance in subarachnoid hemorrhage. Acta Neurochir Suppl (Wien). 1996;67:53–8.

    CAS  Google Scholar 

  24. Boris-Moller F, Wieloch T. Changes in the extracellular levels of glutamate and aspartate during ischemia and hypoglycemia. Effects of hypothermia. Exp Brain Res. 1998;121(3):277–84.

    Article  PubMed  CAS  Google Scholar 

  25. Hillered L, Valtysson J, Enblad P, Persson L. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatr. 1998;64(4):486–91.

    PubMed  CAS  Google Scholar 

  26. Larsen M, Grondahl TO, Haugstad TS, Langmoen IA. The effect of the volatile anesthetic isoflurane on Ca(2+)-dependent glutamate release from rat cerebral cortex. Brain Res. 1994;663:335–7.

    Article  PubMed  CAS  Google Scholar 

  27. Dohmen C, Bosche B, Graf R, Staub F, Kracht L, Sobesky J, et al. Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke. 2003;34(9):2152–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was sponsored by the “Bundesministerium fuer Bildung und Forschung” (BmBF) as part of the “Kompetenznetz Schlaganfall.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, C., Kiening, K. & Schwab, S. Neurochemical Monitoring of Therapeutic Effects in Large Human MCA Infarction. Neurocrit Care 9, 352–356 (2008). https://doi.org/10.1007/s12028-008-9093-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-008-9093-8

Keywords

Navigation