Skip to main content

Advertisement

Log in

Beyond the classical: Influenza virus and the elucidation of alternative MHC class II-restricted antigen processing pathways

  • Current Immunology Research at Jefferson
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

CD4+ T cells (TCD4+) are activated by peptides, generally 13–17 amino acids in length, presented at the cell surface in combination with highly polymorphic MHC class II molecules. According to the classical model, these peptides are generated by endosomal digestion of internalized antigen and loaded onto MHC class II molecules in the late endosome. Historically, this “exogenous” pathway has been defined through the extensive use of purified proteins. However, the relatively recent use of clinically relevant antigens, those of influenza virus in our case, has revealed several additional pathways of peptide production, including some that are truly “endogenous”, entailing synthesis of the protein within the infected cell. Indeed, some peptides appear to be created only via endogenous processing. The cell biology that underlies these alternative pathways remains poorly understood as do their relative contributions to defence against infectious agents and cancer, and the triggering of autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Black CA. Delayed type hypersensitivity: current theories with an historic perspective. Dermatol Online J. 1999;5:7.

    PubMed  CAS  Google Scholar 

  2. Landsteiner K, Chase MW. Experiments on transfer of cutaneous sensitivity to simple compounds. Proc Soc Exp Biol Med. 1942;49:688–90.

    CAS  Google Scholar 

  3. Waksman BH. Cellular hypersensitivity and immunity: conceptual changes in last decade. Cell Immunol. 1979;42:155–69.

    PubMed  CAS  Google Scholar 

  4. Burke DS. Of postulates and peccadilloes: Robert Koch and vaccine (tuberculin) therapy for tuberculosis. Vaccine. 1993;11:795–804.

    PubMed  CAS  Google Scholar 

  5. Kaufmann SHE. Robert Koch’s highs and lows in the search for a remedy for tuberculosis. In: Nat Med. 2000. http://www.nature.com/nm/focus/tb/historical_perspective.html.

  6. Dienes L, Schoenheit EW. The reproduction of tuberculin hypersensitiveness in guinea pigs with various protein substances. Am Rev Tuberc. 1929;20:92–105.

    CAS  Google Scholar 

  7. Becker EL, Munoz J. Studies on the antigenicity of cytochrome c. J Immunol. 1949;63:173–81.

    PubMed  CAS  Google Scholar 

  8. Goncalves JM, Molinari R, Deutsch HF. Chromatographic and immunochemical studies on lysozyme. Arch Biochem Biophys. 1956;60:171–9.

    PubMed  CAS  Google Scholar 

  9. Reichlin M, Hay M, Levine L. Immunochemical studies of hemoglobin and myoglobin and their globin moieties. Biochemistry. 1963;2:971–9.

    PubMed  CAS  Google Scholar 

  10. Marrack P, Graham SD Jr, Leibson HJ, Roehm N, Wegmann D, Kappler JW. Properties of H-2 restricted T cell hybridomas. In: Fathman CG, Fitch FW, editors. Isolation, characterization, and utilization of T lymphocyte clones. New York: Academic Press, Inc; 1982. p. 119–26.

    Google Scholar 

  11. Miller JF, Morahan G, Slattery R, Allison J. Transgenic models of T-cell self tolerance and autoimmunity. Immunol Rev. 1990;118:21–35.

    PubMed  CAS  Google Scholar 

  12. Zhong G, Reis e Sousa C, Germain RN. Production, specificity, and functionality of monoclonal antibodies to specific peptide-major histocompatibility complex class II complexes formed by processing of exogenous protein. Proc Natl Acad Sci USA. 1997;94:13856–61.

    PubMed  CAS  Google Scholar 

  13. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13.

    PubMed  CAS  Google Scholar 

  14. Alter BJ, Bach FH. Lymphocyte reactivity in vitro. I. Cellular reconstitution of purified lymphocyte response. Cell Immunol. 1970;1:207–18.

    PubMed  CAS  Google Scholar 

  15. Unanue ER. The regulation of lymphocyte functions by the macrophage. Immunol Rev. 1978;40:227–55.

    PubMed  CAS  Google Scholar 

  16. Unanue ER. Antigen-presenting function of the macrophage. Annu Rev Immunol. 1984;2:395–428.

    PubMed  CAS  Google Scholar 

  17. Chesnut RW, Grey HM. Studies on the capacity of B cells to serve as antigen-presenting cells. J Immunol. 1981;126:1075–9.

    PubMed  CAS  Google Scholar 

  18. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985;314:537–9.

    PubMed  CAS  Google Scholar 

  19. Grey HM, Chesnut R. Antigen processing and presentation to T cells. Immunol Today. 1985;6:101–6.

    CAS  Google Scholar 

  20. Malissen B, Price MP, Goverman JM, McMillan M, White J, Kappler J, Marrack P, Pierres A, Pierres M, Hood L. Gene transfer of H-2 class II genes: antigen presentation by mouse fibroblast and hamster B-cell lines. Cell. 1984;36:319–27.

    PubMed  CAS  Google Scholar 

  21. Norcross MA, Bentley DM, Marguilies DH, Germain RN. Membrane Ia expression and antigen-presenting accessory cell function of L cells transfected with class II major histocompatibility complex genes. J Exp Med. 1984;160:1316–37.

    PubMed  CAS  Google Scholar 

  22. Lechler RI, Norcross MA, Germain RN. Qualitative and and quantitative studies of antigen-presenting cell function by using I-A-expressing L cells. J Immunol. 1985;135:2914–22.

    PubMed  CAS  Google Scholar 

  23. Steinman RM, Nussenzweig MC. Dendritic cells: features and functions. Immunol Rev. 1980;53:125–47.

    Google Scholar 

  24. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    PubMed  CAS  Google Scholar 

  25. Granucci F, Foti M, Ricciardi-Castagnoli P. Dendritic cell biology. Adv Immunol. 2005;88:193–233.

    PubMed  CAS  Google Scholar 

  26. Sigmundsdottir H, Butcher EC. Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat Immunol. 2008;9:981–7.

    PubMed  CAS  Google Scholar 

  27. Lin ML, Zhan Y, Villadangos JA, Lew AM. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol Cell Biol. 2008;86:353–62.

    PubMed  CAS  Google Scholar 

  28. Kisselev AF, Akopian TN, Woo KM, Goldberg AL. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem. 1999;274:3363–71.

    PubMed  CAS  Google Scholar 

  29. Watts C. Antigen processing in the endocytic compartment. Curr Opin Immunol. 2001;13:26–31.

    PubMed  CAS  Google Scholar 

  30. Stern LJ, Potolicchio I, Santambrogio L. MHC class II compartment subtypes: structure and function. Curr Opin Immunol. 2006;18:64–9.

    PubMed  CAS  Google Scholar 

  31. Sercarz EE, Maverakis E. Mhc-guided processing: binding of large antigen fragments. Nat Rev Immunol. 2003;3:621–9.

    PubMed  CAS  Google Scholar 

  32. Wolf PR, Tourne S, Miyazaki T, Benoist C, Mathis D, Ploegh HL. The phenotype of H-2M-deficient mice is dependent on the MHC class II molecules expressed. Eur J Immunol. 1998;28:2605–18.

    PubMed  CAS  Google Scholar 

  33. Van Kaer L. Accessory proteins that control the assembly of MHC molecules with peptides. Immunol Res. 2001;23:205–14.

    PubMed  Google Scholar 

  34. Jensen PE. Long-lived complexes between peptide and class II major histocompatibility complex are formed at low pH with no requirement for pH neutralization. J Exp Med. 1992;176:793–8.

    PubMed  CAS  Google Scholar 

  35. Groothuis T, Neefjes J. The ins and outs of intracellular peptides and antigen presentation by MHC class I molecules. Curr Top Microbiol Immunol. 2005;300:127–48.

    PubMed  CAS  Google Scholar 

  36. Braciale TJ, Yap KL. Role of viral infectivity in the induction of influenza virus-specific cytotoxic T cells. J Exp Med. 1978;147:1236–52.

    PubMed  CAS  Google Scholar 

  37. Germain RN. The ins and outs of antigen processing and presentation. Nature. 1986;322:687–9.

    PubMed  CAS  Google Scholar 

  38. Lehner PJ, Cresswell P. Recent developments in MHC-class-I-mediated antigen presentation. Curr Opin Immunol. 2004;16:82–9.

    PubMed  CAS  Google Scholar 

  39. Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev. 2005;207:145–57.

    PubMed  CAS  Google Scholar 

  40. Wilson NS, Villadangos JA. Regulation of antigen presentation and cross-presentation in the dendritic cell network: facts, hypothesis, and immunological implications. Adv Immunol. 2005;86:241–305.

    PubMed  CAS  Google Scholar 

  41. Khor B, Makar RS. Toward a molecular explanation for cross-presentation of antigens to the immune system. Transfus Med Rev. 2008;22:188–201.

    PubMed  Google Scholar 

  42. Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem. 2001;70:777–810.

    PubMed  CAS  Google Scholar 

  43. Hurwitz JL, Hackett CJ, McAndrew EC, Gerhard W. Murine TH response to influenza virus: recognition of hemagglutinin, neuraminidase, matrix, and nucleoproteins. J Immunol. 1985;134:1994–8.

    PubMed  CAS  Google Scholar 

  44. Gerhard W, Haberman AM, Scherle PA, Taylor AH, Palladino G, Caton AJ. Identification of eight determinants in the hemagglutinin molecule of influenza virus A/PR/8/34 (H1N1) which are recognized by class II-restricted T cells from BALB/c mice. J Virol. 1991;65:364–72.

    PubMed  CAS  Google Scholar 

  45. Hackett CJ, Hurwitz JL, Dietzschold B, Gerhard W. A synthetic decapeptide of influenza virus hemagglutinin elicits helper T cells with the same fine recognition specificities as occur in response to whole virus. J Immunol. 1985;135:1391–4.

    PubMed  CAS  Google Scholar 

  46. Hurwitz JL, Heber-Katz E, Hackett CJ, Gerhard W. Characterization of the murine TH response to influenza virus hemagglutinin: evidence for three major specificities. J Immunol. 1984;133:3371–7.

    PubMed  CAS  Google Scholar 

  47. Yoshikawa M, Watanabe M, Hozumi N. Analysis of proteolytic processing during specific antigen presentation. Cell Immunol. 1987;110:431–5.

    PubMed  CAS  Google Scholar 

  48. Bland PW, Whiting CV. Antigen processing by isolated rat intestinal villus enterocytes. Immunology. 1989;68:497–502.

    PubMed  CAS  Google Scholar 

  49. Wyss-Coray T, Brander C, Bettens F, Mijic D, Pichler WJ. Use of antibody/peptide constructs of direct antigenic peptides to T cells: evidence for T cell processing and presentation. Cell Immunol. 1992;139:268–73.

    PubMed  CAS  Google Scholar 

  50. Eisenlohr LC, Gerhard W, Hackett CJ. Individual class II-restricted antigenic determinants of the same protein exhibit distinct kinetics of appearance and persistence on antigen-presenting cells. J Immunol. 1988;141:2581–4.

    PubMed  CAS  Google Scholar 

  51. Neefjes JJ, Ploegh HL. Inhibition of endosomal proteolytic activity by leupeptin blocks surface expression of MHC class II molecules and their conversion to SDS resistance alpha beta heterodimers in endosomes. EMBO J. 1992;11:411–6.

    PubMed  CAS  Google Scholar 

  52. Chianese-Bullock KA, Russell HI, Moller C, Gerhard W, Monaco JJ, Eisenlohr LC. Antigen processing of Two H2-IEd restricted epitopes is differentially influenced by the structural changes in a viral glycoprotein. J Immunol. 1998;161:1599–607.

    PubMed  CAS  Google Scholar 

  53. Sinnathamby G, Maric M, Cresswell P, Eisenlohr LC. Differential requirements for endosomal reduction in the presentation of two H2-E(d)-restricted epitopes from influenza hemagglutinin. J Immunol. 2004;172:6607–14.

    PubMed  CAS  Google Scholar 

  54. Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol. 1997;15:821–50.

    PubMed  CAS  Google Scholar 

  55. van den Hoorn T, Paul P, Jongsma ML, Neefjes J. Routes to manipulate MHC class II antigen presentation. Curr Opin Immunol. 2011;23:88–95.

    PubMed  CAS  Google Scholar 

  56. Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol. 2008;9:543–56.

    PubMed  CAS  Google Scholar 

  57. Harrison SC. Viral membrane fusion. Nat Struct Mol Biol. 2008;15:690–8.

    PubMed  CAS  Google Scholar 

  58. Falnes PO, Sandvig K. Penetration of protein toxins into cells. Curr Opin Cell Biol. 2000;12:407–13.

    PubMed  CAS  Google Scholar 

  59. Shin JS, Ebersold M, Pypaert M, Delamarre L, Hartley A, Mellman I. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature. 2006;444:115–8.

    PubMed  CAS  Google Scholar 

  60. Ohmura-Hoshino M, Matsuki Y, Mito-Yoshida M, Goto E, Aoki-Kawasumi M, Nakayama M, Ohara O, Ishido S. Cutting edge: requirement of MARCH-I-mediated MHC II ubiquitination for the maintenance of conventional dendritic cells. J Immunol. 2009;183:6893–7.

    PubMed  CAS  Google Scholar 

  61. McGehee AM, Strijbis K, Guillen E, Eng T, Kirak O, Ploegh HL. Ubiquitin-dependent control of class II MHC localization is dispensable for antigen presentation and antibody production. PLoS One. 2011;6:e18817.

    PubMed  CAS  Google Scholar 

  62. Matsuki Y, Ohmura-Hoshino M, Goto E, Aoki M, Mito-Yoshida M, Uematsu M, Hasegawa T, Koseki H, Ohara O, Nakayama M, Toyooka K, Matsuoka K, Hotta H, Yamamoto A, Ishido S. Novel regulation of MHC class II function in B cells. EMBO J. 2007;26:846–54.

    PubMed  CAS  Google Scholar 

  63. De Gassart A, Camosseto V, Thibodeau J, Ceppi M, Catalan N, Pierre P, Gatti E. MHC class II stabilization at the surface of human dendritic cells is the result of maturation-dependent MARCH I down-regulation. Proc Natl Acad Sci USA. 2008;105:3491–6.

    PubMed  Google Scholar 

  64. Thibodeau J, Bourgeois-Daigneault MC, Huppe G, Tremblay J, Aumont A, Houde M, Bartee E, Brunet A, Gauvreau ME, de Gassart A, Gatti E, Baril M, Cloutier M, Bontron S, Fruh K, Lamarre D, Steimle V. Interleukin-10-induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. Eur J Immunol. 2008;38:1225–30.

    PubMed  CAS  Google Scholar 

  65. Walseng E, Furuta K, Bosch B, Weih KA, Matsuki Y, Bakke O, Ishido S, Roche PA. Ubiquitination regulates MHC class II-peptide complex retention and degradation in dendritic cells. Proc Natl Acad Sci USA. 2010;107:20465–70.

    PubMed  CAS  Google Scholar 

  66. van Niel G, Wubbolts R, Stoorvogel W. Endosomal sorting of MHC class II determines antigen presentation by dendritic cells. Curr Opin Cell Biol. 2008;20:437–44.

    PubMed  Google Scholar 

  67. Hackett CJ, Horowitz D, Wysocka M, Eisenlohr LC. Immunogenic peptides of influenza virus subtype N1 neuraminidase identify a T-cell determinant used in class II major histocompatibility complex-restricted responses to infectious virus. J Virol. 1991;65:672–6.

    PubMed  CAS  Google Scholar 

  68. Eisenlohr LC, Hackett CJ. Class II major histocompatibility complex-restricted T cells specific for a virion structural protein that do not recognize exogenous influenza virus. J Exp Med. 1989;169:921–31.

    PubMed  CAS  Google Scholar 

  69. Jacobson S, Sekaly RP, Jacobson CL, McFarland HF, Long EO. HLA class II restricted presentation of cytoplasmic measles virus antigens to cytotoxic T cells. J Virol. 1989;63:1756–62.

    PubMed  CAS  Google Scholar 

  70. Malnati MS, Marti M, LaVaute T, Jaraquemada D, Biddison W, DeMars R, Long EO. Processing pathways for presentation of cytosolic antigen to MHC class II-restricted T cells. Nature. 1992;357:702–4.

    PubMed  CAS  Google Scholar 

  71. Pinet V, Malnati MS, Long EO. Two processing pathways for the MHC class II-restricted presentation of exogenous influenza virus antigen. J Immunol. 1994;152:4852–60.

    PubMed  CAS  Google Scholar 

  72. Munthe LA, Kyte JA, Bogen B. Resting small B cells present endogenous immunoglobulin variable-region determinants to idiotope-specific CD4(+) T cells in vivo. Eur J Immunol. 1999;29:4043–52.

    PubMed  CAS  Google Scholar 

  73. Baggi F, Nicolle M, Vincent A, Matsuo H, Willcox N, Newsom-Davis J. Presentation of endogenous acetylcholine receptor epitope by an MHC class II-transfected human muscle cell line to a specific CD4+ T cell clone from a myasthenia gravis patient. J Neuroimmunol. 1993;46:57–65.

    PubMed  CAS  Google Scholar 

  74. Loss GE Jr, Elias CG, Fields PE, Ribaudo RK, McKisic M, Sant AJ. Major histocompatibility complex class II-restricted presentation of an internally synthesized antigen displays cell-type variability and segregates from the exogenous class II and endogenous class I presentation pathways. J Exp Med. 1993;178:73–85.

    PubMed  CAS  Google Scholar 

  75. Calin-Laurens V, Forquet F, Lombard-Platet S, Bertolino P, Chretien I, Trescol-Biemont MC, Gerlier D, Rabourdin-Combe C. High efficiency of endogenous antigen presentation by MHC class II molecules. Int Immunol. 1992;4:1113–21.

    PubMed  CAS  Google Scholar 

  76. Moreno J, Vignali DAA, Nadimi F, Fuchs S, Adorini L, Hämmerling GJ. Processing of an endogenous protein can generate MHC class II-restricted T cell determinants distinct from those derived from exogenous antigen. J Immunol. 1991;147:3306–13.

    PubMed  CAS  Google Scholar 

  77. Crotzer VL, Blum JS. Autophagy and adaptive immunity. Immunology. 2010;131:9–17.

    PubMed  CAS  Google Scholar 

  78. Munz C. Antigen processing via autophagy—not only for MHC class II presentation anymore? Curr Opin Immunol. 2010;22:89–93.

    PubMed  Google Scholar 

  79. Tewari MK, Sinnathamby G, Rajagopal D, Eisenlohr LC. A cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent. Nat Immunol. 2005;6:287–94.

    PubMed  CAS  Google Scholar 

  80. Bijlmakers M-JJE, Benaroch P, Ploegh Hl. Assembly of HLA DR1 molecules translated in vitro: binding of peptide in the endoplasmic reticulum precludes association with invariant chain. EMBO J. 1994;13:2699–707.

    PubMed  CAS  Google Scholar 

  81. Busch R, Yturina IY, Drexler J, Momburg F, Hämmerling GJ. Poor loading of major histocompatibility complex class II molecules with endogenously synthesized short peptides in the absence of invariant chain. Eur J Immunol. 1995;25:48–53.

    PubMed  CAS  Google Scholar 

  82. Aichinger G, Karlsson L, Jackson MR, Vestberg M, Vaughan JH, Teyton L, Lechler RI, Peterson PA. Major histocompatibility complex class II-dependent unfolding, transport, and degradation of endogenous proteins. J Biol Chem. 1997;272:29127–36.

    PubMed  CAS  Google Scholar 

  83. Dodi AI, Brett S, Nordeng T, Sidhu N, Batchelor RJ, Lombardi G, Bakke O, Lechler RI. The invariant chain inhibits presentation of endogenous antigens by a human fibroblast cell line. Eur J Immunol. 1994;24:1632–9.

    PubMed  CAS  Google Scholar 

  84. Lightstone L, Hargreaves R, Bobek G, Peterson M, Aichinger G, Lombardi G, Lechler R. In the absence of the invariant chain, HLA-DR molecules display a distinct array of peptides which is influenced by the presence or absence of HLA-DM. Proc Natl Acad Sci USA. 1997;94:5772–7.

    PubMed  CAS  Google Scholar 

  85. Armstrong TD, Clements VK, Martin BK, Ting JP, Ostrand-Rosenberg S. Major histocompatibility complex class II-transfected tumor cells present endogenous antigen and are potent inducers of tumor-specific immunity. Proc Natl Acad Sci USA. 1997;94:6886–91.

    PubMed  CAS  Google Scholar 

  86. Frauwirth K, Shastri N. Introducing endogenous antigens into the major histocompatibility complex (MHC) class II presentation pathway. Both Ii mediated inhibition and enhancement of endogenous peptide/MHC class II presentation require the same Ii domains. Immunology. 2001;102:405–15.

    PubMed  CAS  Google Scholar 

  87. Lu X, Wu S, Blackwell CE, Humphreys RE, von Hofe E, Xu M. Suppression of major histocompatibility complex class II-associated invariant chain enhances the potency of an HIV gp120 DNA vaccine. Immunology. 2007;120:207–16.

    PubMed  CAS  Google Scholar 

  88. Reay PA, Wettstein DA, Davis MM. pH dependence and exchange of high and low responder peptides binding to a class II MHC molecule. EMBO J. 1992;11:2829–39.

    PubMed  CAS  Google Scholar 

  89. Nijenhuis M, Neefjes J. Early events in the assembly of major histocompatibility complex class II heterotrimers from their free subunits. Eur J Immunol. 1994;24:247–56.

    PubMed  CAS  Google Scholar 

  90. Demotz S, Grey HM, Sette A. The minimal number of class II MHC-antigen complexes needed for T cell association. Science. 1990;249:1028–30.

    PubMed  CAS  Google Scholar 

  91. Harding CV, Unanue ER. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature. 1991;346:574–6.

    Google Scholar 

  92. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature. 2002;419:845–9.

    PubMed  CAS  Google Scholar 

  93. Burgdorf S, Scholz C, Kautz A, Tampe R, Kurts C. Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation. Nat Immunol. 2008;9:558–66.

    PubMed  CAS  Google Scholar 

  94. Comber JD, Robinson TM, Siciliano NA, Snook AE, Eisenlohr LC. Functional macroautophagy induction by influenza A virus without a contribution to major histocompatibility complex class II-restricted presentation. J Virol. 2011;85:6453–63.

    PubMed  CAS  Google Scholar 

  95. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    PubMed  CAS  Google Scholar 

  96. Gannage M, Munz C. Autophagy in MHC class II presentation of endogenous antigens. Curr Top Microbiol Immunol. 2009;335:123–40.

    PubMed  CAS  Google Scholar 

  97. Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S, Iwasaki A. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity. 2010;32:227–39.

    PubMed  CAS  Google Scholar 

  98. Kwun HJ, da Silva SR, Shah IM, Blake N, Moore PS, Chang Y. Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J Virol. 2007;81:8225–35.

    PubMed  CAS  Google Scholar 

  99. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG. Inhibiton of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995;375:685–8.

    PubMed  CAS  Google Scholar 

  100. Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA. 1997;94:12616–21.

    PubMed  CAS  Google Scholar 

  101. Zaldumbide A, Ossevoort M, Wiertz EJ, Hoeben RC. In cis inhibition of antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma herpes virus. Mol Immunol. 2007;44:1352–60.

    PubMed  CAS  Google Scholar 

  102. Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002;11:1107–17.

    PubMed  CAS  Google Scholar 

  103. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003;278:25009–13.

    PubMed  CAS  Google Scholar 

  104. Cuervo AM. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab. 2010;21:142–50.

    PubMed  CAS  Google Scholar 

  105. Wing SS, Chiang HL, Goldberg AL, Dice JF. Proteins containing peptide sequences related to Lys-Phe-Glu-Arg-Gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Biochem J. 1991;275(Pt 1):165–9.

    PubMed  CAS  Google Scholar 

  106. Lich JD, Elliott JF, Blum JS. Cytoplasmic processing is a prerequisite for presentation of an endogenous antigen by major histocompatibility complex class II proteins. J Exp Med. 2000;191:1513–24.

    PubMed  CAS  Google Scholar 

  107. Crotzer VL, Blum JS. Autophagy and intracellular surveillance: modulating MHC class II antigen presentation with stress. Proc Natl Acad Sci USA. 2005;102:7779–80.

    PubMed  CAS  Google Scholar 

  108. Zhou D, Li P, Lin Y, Lott JM, Hislop AD, Canaday DH, Brutkiewicz RR, Blum JS. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity. 2005;22:571–81.

    PubMed  CAS  Google Scholar 

  109. Todde V, Veenhuis M, van der Klei IJ. Autophagy: principles and significance in health and disease. Biochim Biophys Acta. 2009;1792:3–13.

    PubMed  CAS  Google Scholar 

  110. Weiss S, Bogen B. B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells. Proc Natl Acad Sci USA. 1989;86:282–6.

    PubMed  CAS  Google Scholar 

  111. Weiss S, Bogen B. MHC class II-restricted presentation of intracellular antigen. Cell. 1991;64:767–76.

    PubMed  CAS  Google Scholar 

  112. Nuchtern JG, Biddison WE, Klausner RD. Class II MHC molecules can use the endogenous pathway of antigen presentation. Nature. 1990;343:74–6.

    PubMed  CAS  Google Scholar 

  113. Brooks A, Hartley S, Kjer-Nielsen L, Perera J, Goodenow CG, Basten A, McCluskey J. Class II-restricted presentation of an endogenously derived immunodominant T-cell determinant of hen egg lysozyme. Proc Natl Acad Sci USA. 1991;88:3290–4.

    PubMed  CAS  Google Scholar 

  114. Silva CL, Palacios A, Colston MJ, Lowrie DB. Mycobacterium leprae 65hsp antigen expressed from a retroviral vector in a macrophage cell line is presented to T cells in association with MHC class II in addition to MHC class I. Microb Pathog. 1992;12:27–38.

    PubMed  CAS  Google Scholar 

  115. Brooks AG, McCluskey J. Class II-restricted presentation of a hen egg lysozyme determinant derived from endogenous antigen sequestered in the cytoplasm or endoplasmic reticulum of the antigen poresenting cell. J Immunol. 1993;150:3690–7.

    PubMed  CAS  Google Scholar 

  116. Lombard-Platet S, Bertolino P, Gimenez C, Humbert M, Gerlier D, Rabourdin-Combe C. Invariant chain expression similarly controls presentation of endogenously synthesized and exogenous antigens by MHC class II molecules. Cell Immunol. 1993;148:60–70.

    PubMed  CAS  Google Scholar 

  117. Callahan KM, Rowell JF, Soloski MJ, Machamer CE, Siliciano RF. HIV-1 envelope protein is expressed on the surface of infected cells before its processing and presentation to class II-restricted T lymphocytes. J Immunol. 1993;151:2928–42.

    PubMed  CAS  Google Scholar 

  118. Malnati MS, Ceman S, Weston M, DeMars R, Long EO. Presentation of cytosolic antigen by HLA-DR requires a function encoded in the class II region of the MHC. J Immunol. 1993;151:6751–6.

    PubMed  CAS  Google Scholar 

  119. Lombard-Platlet S, Bertolino P, Deng H, Gerlier D, Rabourdin-Combe C. Inhibition by chloroquine of the class II major histocompatibility complex-restricted presentation of endogenous antigens varies according to the cellular origin of the antigen-presenting cells, the nature of the T-cell epitope, and the responding T cell. Immunology. 1993;80:566–73.

    PubMed  CAS  Google Scholar 

  120. Wysocka M, Eisenlohr LC, Otvos L Jr, Horowitz D, Yewdell JW, Bennink JR, Hackett CJ. Identification of overlapping class I and class II H-2d-restricted T cell determinants of influenza virus N1 neuraminidase that require infectious virus for presentation. Virology. 1994;201:86–94.

    PubMed  CAS  Google Scholar 

  121. Chen PW, Ullrich SE, Ananthaswamy HN. Presentation of endogenous tumor antigens to CD4+ T lymphocytes by murine melanoma cells transfected with major histocompatibility complex class II genes. J Leukoc Biol. 1994;56:469–74.

    PubMed  CAS  Google Scholar 

  122. Oxenius A, Bachmann MF, Ashton-Rickardt PG, Tonegawa S, Zinkernagel RM, Hengartner H. Presentation of endogenous viral proteins in association with major histocompatibility complex class II: on the role of intracellular compartmentalization, invariant chain and the TAP transporter system. Eur J Immunol. 1995;25:3402–11.

    PubMed  CAS  Google Scholar 

  123. Gueguen M, Long EO. Presentation of a cytosolic antigen by major histocompatibility complex class II molecules requires a long-lived form of the antigen. Proc Natl Acad Sci USA. 1996;93:14692–7.

    PubMed  CAS  Google Scholar 

  124. Kima PE, Soong L, Chicharro C, Ruddle NH, McMahon-Pratt D. Leishmania-infected macrophages sequester endogenously synthesized parasite antigens from presentation to CD4+ T cells. Eur J Immunol. 1996;26:3163–9.

    PubMed  CAS  Google Scholar 

  125. Parra-Lopez CA, Lindner R, Vidavsky I, Gross M, Unanue ER. Presentation on class II MHC molecules of endogenous lysozyme targeted to the endocytic pathway. J Immunol. 1997;158:2670–9.

    PubMed  CAS  Google Scholar 

  126. Lippolis JD, Denis-Mize KS, Brinckerhoff LH, Slingluff CL Jr, Galloway DR, Engelhard VH. Pseudomonas exotoxin-mediated delivery of exogenous antigens to MHC class I and class II processing pathways. Cell Immunol. 2000;203:75–83.

    PubMed  CAS  Google Scholar 

  127. Qi L, Ostrand-Rosenberg S. MHC class II presentation of endogenous tumor antigen by cellular vaccines depends on the endocytic pathway but not H2-M. Traffic. 2000;1:152–60.

    PubMed  CAS  Google Scholar 

  128. Topalian SL, Gonzales MI, Ward Y, Wang X, Wang RF. Revelation of a cryptic major histocompatibility complex class II-restricted tumor epitope in a novel RNA-processing enzyme. Cancer Res. 2002;62:5505–9.

    PubMed  CAS  Google Scholar 

  129. Beninga J, Rock KL, Goldberg AL. Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J Biol Chem. 1998;273:18734–42.

    PubMed  CAS  Google Scholar 

  130. York IA, Goldberg AL, Mo XY, Rock Kl. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol Rev. 1999;172:49–66.

    PubMed  CAS  Google Scholar 

  131. Fruh K, Yang Y. Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol. 1999;11:76–81.

    PubMed  CAS  Google Scholar 

  132. Hammer GE, Gonzalez F, Champsaur M, Cado D, Shastri N. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat Immunol. 2006;7:103–12.

    PubMed  CAS  Google Scholar 

  133. Hammer GE, Gonzalez F, James E, Nolla H, Shastri N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat Immunol. 2007;8:101–8.

    PubMed  CAS  Google Scholar 

  134. Testa JS, Apcher GS, Comber JD, Eisenlohr LC. Exosome-driven antigen transfer for MHC class II presentation facilitated by the receptor binding activity of influenza hemagglutinin. J Immunol. 2010;185:6608–16.

    PubMed  CAS  Google Scholar 

  135. Lee P, Matsueda GR, Allen PM. T cell recognition of fibrinogen. A determinant on the Aα-chain does not require processing. J Immunol. 1988;140:1063–8.

    PubMed  CAS  Google Scholar 

  136. Runnels HA, Weber DA, Moore JC, Westerman LE, Jensen PE. Intact proteins can bind to class II histocompatibility molecules with high affinity. Mol Immunol. 1997;34:471–80.

    PubMed  CAS  Google Scholar 

  137. Watts C, Matthews SP, Mazzeo D, Manoury B, Moss CX. Asparaginyl endopeptidase: case history of a class II MHC compartment protease. Immunol Rev. 2005;207:218–28.

    PubMed  CAS  Google Scholar 

  138. Varghese JN, Laver WG, Colman PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature. 1983;303:35–40.

    PubMed  CAS  Google Scholar 

  139. Lechner F, Wong DK, Dunbar PR, Chapman R, Chung RT, Dohrenwend P, Robbins G, Phillips R, Klenerman P, Walker BD. Analysis of successful immune responses in persons infected with hepatitis C virus. J Exp Med. 2000;191:1499–512.

    PubMed  CAS  Google Scholar 

  140. Shoukry NH, Cawthon AG, Walker CM. Cell-mediated immunity and the outcome of hepatitis C virus infection. Annu Rev Microbiol. 2004;58:391–424.

    PubMed  CAS  Google Scholar 

  141. O’Garra A, Steinman L, Gijbels K. CD4 + T-cell subsets in autoimmunity. Curr Opin Immunol. 1997;9:872–83.

    PubMed  Google Scholar 

  142. Ostrand-Rosenberg S. CD4 + T lymphocytes: a critical component of antitumor immunity. Cancer Invest. 2005;23:413–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence C. Eisenlohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenlohr, L.C., Luckashenak, N., Apcher, S. et al. Beyond the classical: Influenza virus and the elucidation of alternative MHC class II-restricted antigen processing pathways. Immunol Res 51, 237–248 (2011). https://doi.org/10.1007/s12026-011-8257-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-011-8257-3

Keywords

Navigation