Skip to main content

Advertisement

Log in

Transcriptional and epigenetic regulation of B cell development

  • University of Pittsburgh Immunology 2011
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

B cell development starts in the bone marrow where hematopoietic stem cells (HSCs) progress through sequential developmental stages, as it differentiates into a naïve B cell expressing surface immunoglobulin. In the periphery, B cells that encounter antigen can further differentiate into antibody-secreting plasma cells. In this review, we focus on two factors, E47 and ELL2, which play important roles in the regulation of B cell development in the bone marrow and differentiation of mature B cells into plasma cells in the periphery, respectively. First, E47 activity is required for B cell development in the bone marrow. In addition, we have identified a cell-intrinsic role for E47 in regulating efficient self-renewal and long-term multilineage bone marrow reconstitution potential of HSCs. Second, we explored the role of transcription elongation factors in the super elongation complex (SEC), including ELL2 (eleven-nineteen lysine-rich leukemia factor) in driving poly(A) site choice and plasma cell development. We found that elongation factors impel high levels of IgH mRNA production and alternative processing at the promoter proximal, secretory-specific (sec) poly(A) site in plasma cells by enhancing RNA polymerase II modifications and downstream events. The sec poly(A) site, essentially hidden in B cells, is found by SEC factors in plasma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273(5272):242–5.

    Article  PubMed  CAS  Google Scholar 

  2. Yilmaz OH, Kiel MJ, Morrison SJ. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood. 2006;107(3):924–30.

    Article  PubMed  CAS  Google Scholar 

  3. Ng SY, Yoshida T, Zhang J, Georgopoulos K. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity. 2009;30(4):493–507.

    Article  PubMed  CAS  Google Scholar 

  4. Mansson R, Zandi S, Welinder E, Tsapogas P, Sakaguchi N, Bryder D, Sigvardsson M. Single-cell analysis of the common lymphoid progenitor compartment reveals functional and molecular heterogeneity. Blood. 2010;115(13):2601–9.

    Article  PubMed  CAS  Google Scholar 

  5. Santos PM, Borghesi L. Molecular resolution of the B cell landscape. Curr Opin Immunol. 2011;23(2):163–70.

    Article  PubMed  CAS  Google Scholar 

  6. Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 1997;11(6):774–85.

    Article  PubMed  CAS  Google Scholar 

  7. Mansson R, Hultquist A, Luc S, et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity. 2007;26(4):407–19.

    Article  PubMed  Google Scholar 

  8. Bain G, Maandag EC, Izon DJ, et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell. 1994;79(5):885–92.

    Article  PubMed  CAS  Google Scholar 

  9. Nutt SL, Urbanek P, Rolink A, Busslinger M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 1997;11(4):476–91.

    Article  PubMed  CAS  Google Scholar 

  10. Sigvardsson M, Clark DR, Fitzsimmons D, et al. Early B-cell factor, E2A, and Pax-5 cooperate to activate the early B cell-specific mb-1 promoter. Mol Cell Biol. 2002;22(24):8539–51.

    Article  PubMed  CAS  Google Scholar 

  11. Adolfsson J, Mansson R, Buza-Vidas N, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306.

    Article  PubMed  CAS  Google Scholar 

  12. Forsberg EC, Serwold T, Kogan S, Weissman IL, Passegue E. New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell. 2006;126(2):415–26.

    Article  PubMed  CAS  Google Scholar 

  13. Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell. 1994;79(5):875–84.

    Article  PubMed  CAS  Google Scholar 

  14. Borghesi L, Aites J, Nelson S, Lefterov P, James P, Gerstein R. E47 is required for V(D)J recombinase activity in common lymphoid progenitors. J Exp Med. 2005;202(12):1669–77.

    Article  PubMed  CAS  Google Scholar 

  15. Murre C. Helix-loop-helix proteins and lymphocyte development. Nat Immunol. 2005;6(11):1079–86.

    Article  PubMed  CAS  Google Scholar 

  16. Bain G, Gruenwald S, Murre C. E2A and E2–2 are subunits of B-cell-specific E2-box DNA-binding proteins. Mol Cell Biol. 1993;13(6):3522–9.

    PubMed  CAS  Google Scholar 

  17. Sun XH, Copeland NG, Jenkins NA, Baltimore D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol. 1991;11(11):5603–11.

    PubMed  CAS  Google Scholar 

  18. Ikawa T, Kawamoto H, Wright LY, Murre C. Long-term cultured E2A-deficient hematopoietic progenitor cells are pluripotent. Immunity. 2004;20(3):349–60.

    Article  PubMed  CAS  Google Scholar 

  19. Yang Q, Kardava L, St Leger A, Martincic K, Varnum-Finney B, Bernstein ID, Milcarek C, Borghesi L. E47 controls the developmental integrity and cell cycle quiescence of multipotential hematopoietic progenitors. J Immunol. 2008;181(9):5885–94.

    PubMed  CAS  Google Scholar 

  20. Dias S, Mansson R, Gurbuxani S, Sigvardsson M, Kee BL. E2A proteins promote development of lymphoid-primed multipotent progenitors. Immunity. 2008;29(2):217–27.

    Article  PubMed  CAS  Google Scholar 

  21. Yang Q, Esplin B, Borghesi L. E47 regulates hematopoietic stem cell proliferation and energetics but not myeloid lineage restriction. Blood. 2011;117(13):3529–38.

    Article  PubMed  CAS  Google Scholar 

  22. Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008;9(2):115–28.

    Article  PubMed  CAS  Google Scholar 

  23. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000;287(5459):1804–8.

    Article  PubMed  CAS  Google Scholar 

  24. Prabhu S, Ignatova A, Park ST, Sun XH. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol Cell Biol. 1997;17(10):5888–96.

    PubMed  CAS  Google Scholar 

  25. Aspland SE, Bendall HH, Murre C. The role of E2A-PBX1 in leukemogenesis. Oncogene. 2001;20(40):5708–17.

    Article  PubMed  CAS  Google Scholar 

  26. Bain G, Engel I, Robanus Maandag EC, et al. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol. 1997;17(8):4782–91.

    PubMed  CAS  Google Scholar 

  27. Bryder D, Sigvardsson M. Shaping up a lineage–lessons from B lymphopoiesis. Curr Opin Immunol. 2010;22(2):148–53.

    Article  PubMed  CAS  Google Scholar 

  28. Cochrane SW, Zhao Y, Welner RS, Sun XH. Balance between Id and E proteins regulates myeloid-versus-lymphoid lineage decisions. Blood. 2009;113(5):1016–26.

    Article  PubMed  CAS  Google Scholar 

  29. Lacombe J, Herblot S, Rojas-Sutterlin S, Haman A, Barakat S, Iscove NN, Sauvageau G, Hoang T. Scl regulates the quiescence and the long-term competence of hematopoietic stem cells. Blood. 2010;115(4):792–803.

    Article  PubMed  CAS  Google Scholar 

  30. Mathas S, Janz M, Hummel F, et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol. 2006;7(2):207–15.

    Article  PubMed  CAS  Google Scholar 

  31. Passegue E, Weisman IL. Leukemic stem cells: where do they come from? Stem Cell Rev. 2005;1(3):181–8.

    Article  PubMed  CAS  Google Scholar 

  32. Perry SS, Zhao Y, Nie L, Cochrane SW, Huang Z, Sun XH. Id1, but not Id3, directs long-term repopulating hematopoietic stem-cell maintenance. Blood. 2007;110(7):2351–60.

    Article  PubMed  CAS  Google Scholar 

  33. Ramirez J, Lukin K, Hagman J. From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr Opin Immunol. 2010;22(2):177–84.

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz R, Engel I, Fallahi-Sichani M, Petrie HT, Murre C. Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. Proc Natl Acad Sci USA. 2006;103(26):9976–81.

    Article  PubMed  CAS  Google Scholar 

  35. Semerad CL, Mercer EM, Inlay MA, Weissman IL, Murre C. E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proc Natl Acad Sci USA. 2009;106(6):1930–5.

    Article  PubMed  CAS  Google Scholar 

  36. Tang R, Hirsch P, Fava F, et al. High Id1 expression is associated with poor prognosis in 237 patients with acute myeloid leukemia. Blood. 2009;114(14):2993–3000.

    Article  PubMed  CAS  Google Scholar 

  37. Williams DL, Look AT, Melvin SL, Roberson PK, Dahl G, Flake T, Stass S. New chromosomal translocations correlate with specific immunophenotypes of childhood acute lymphoblastic leukemia. Cell. 1984;36(1):101–9.

    Article  PubMed  CAS  Google Scholar 

  38. Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol. 1997;17(12):7317–27.

    PubMed  CAS  Google Scholar 

  39. Milcarek C. Hide and go seek: activation of the secretory-specific poly(A) site of IgH by transcription elongation factors. In: Grabowski P, editor. RNA processing, vol. 1: InTech. 2011, in press.

  40. Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA. 2009;106(17):7028–33.

    Article  PubMed  CAS  Google Scholar 

  41. Core LJ, Lis JT. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science. 2008;319:1791–2.

    Article  PubMed  CAS  Google Scholar 

  42. Muñoz MJ, de la Mata M, Kornblihtt AR. The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem Sci. 2010;35(9):497–504.

    Article  PubMed  Google Scholar 

  43. Xu Y-X, Manley JL. Pin1 modulates RNA polymerase II activity during the transcription cycle. Genes Dev. 2007;21(22):2950–62.

    Article  PubMed  CAS  Google Scholar 

  44. Pirngruber J, Schhebet A, Johnsen SA. Insights into the function of the human pTEFb component cdk9 in the regulation of chromatin modifications and co-transcriptional mRNA processing. Cell Cycle. 2009;8:3636–42.

    Article  PubMed  CAS  Google Scholar 

  45. Milcarek C, Hartman M, Croll S. Changes in abundance of IgG 2a mRNA in the nucleus and cytoplasm of a murine B-lymphoma before and after fusion to a myeloma cell. Mol Immunol. 1996;33(7–8):691–701.

    Article  PubMed  CAS  Google Scholar 

  46. Shell SA, Martincic K, Tran J, Milcarek C. Increased phosphorylation of the carboxyl terminal domain of RNA polymerase II and loading of polyadenylation and co-transcriptional factors contribute to regulation of the Ig heavy chain mRNA in plasma cells. J Immunol. 2007;179:7663–73.

    PubMed  CAS  Google Scholar 

  47. Martincic K, Alkan SA, Cheatle A, Borghesi L, Milcarek C. Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nat Immunol. 2009;10(10):1102–9.

    Article  PubMed  CAS  Google Scholar 

  48. Yamaguchi Y, Wada T, Handa H. Interplay between positive and negative elongation factors: drawing a new view of DRB. Genes Cells. 1998;3:9–15.

    Article  PubMed  CAS  Google Scholar 

  49. Nagaike T, Logan C, Hotta I, Rozenblatt-Rosen O, Meyerson M, Manley JL. Transcriptional activators enhance polyadenylation of mRNA precursors. Mol Cell. 2011;41(4):409–18.

    Article  PubMed  CAS  Google Scholar 

  50. Takagaki Y, Seipelt R, Peterson M, Manley J. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B-cell differentiation. Cell. 1996;87:941–52.

    Article  PubMed  CAS  Google Scholar 

  51. Shell SA, Hesse C, Morris SM Jr, Milcarek C. Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection. J Biol Chem. 2005;280(48):39950–61.

    Article  PubMed  CAS  Google Scholar 

  52. Martincic K, Campbell R, Edwalds-Gilbert G, Souan L, Lotze M, Milcarek C. Increase in the 64-kDa subunit of the polyadenylation/cleavage stimulatory factor during the Go to S phase transition. Proc Natl Acad Sci USA. 1998;95(19):11095–100.

    Article  PubMed  CAS  Google Scholar 

  53. Getz MJ, Elder PK, Benz EW, Stephenson E, Moses HL. Effect of cell proliferation on levels and diversity of poly(A)-containing mRNA. Cell. 1976;7:255.

    Article  PubMed  CAS  Google Scholar 

  54. Thirman MJ, Levitan DA, Kobayahi H, Simon MC, Rowley JD. Cloning of ELL, a gene that fuses to MLL in a t(11:19)(q23:p13.1) in acute myeloid leukemia. Proc Natl Acad Sci USA. 1994;91:12110–4.

    Article  PubMed  CAS  Google Scholar 

  55. Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW. An RNA polymerase II elongation factor encoded by the human ELL gene. Science. 1996;271:1873–6.

    Article  PubMed  CAS  Google Scholar 

  56. Shilatifard A, Duan DR, Haque D, Florence C, Schubach WH, Conaway JW, Conaway RC. ELL2, a new member of an ELL family of RNA polymerase II elongation factors. Proc Natl Acad Sci USA. 1997;94:3639–43.

    Article  PubMed  CAS  Google Scholar 

  57. Miller T, Williams K, Johnstone RW, Shilatifard A. Identification, cloning, expression, and biochemical characterization of the testis-specific RNA polymerase II elongation factor ELL3. J Biol Chem. 2000;275:32052–6.

    Article  PubMed  CAS  Google Scholar 

  58. Sato S, Tomomori-Sato C, Parmely TJ, et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell. 2004;14(5):685–91.

    Article  PubMed  CAS  Google Scholar 

  59. Gerber MA, Shilatifard A, Eissenberg JC. Mutational analysis of an RNA polymerase II elongation factor in Drosophila melanogaster. Mol Cell Biol. 2005;25(17):7803–11.

    Article  PubMed  CAS  Google Scholar 

  60. Underhill GH, George D, Bremer EG, Kansas GS. Gene expression profiling reveals a highly specialized genetic program of plasma cells. Blood. 2003;101(10):4013–21.

    Article  PubMed  CAS  Google Scholar 

  61. Turner C, Mack D, Davis M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell. 1994;77:297–306.

    Article  PubMed  CAS  Google Scholar 

  62. Lin Y, Wong K, Calame K. Blimp-1, an inducer of terminal B-cell differentiation, represses c-Myc transcription. Science. 1997;276:596–9.

    Article  PubMed  CAS  Google Scholar 

  63. Kornblihtt AR, De La Mata M, Fededa J-P, Munoz MJ, Nogues G. Multiple links between transcription and splicing. RNA. 2004;10(10):1489–98.

    Article  PubMed  CAS  Google Scholar 

  64. Lin C, Smith ER, Takahashi H, et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell. 2010;37(3):429–37.

    Article  PubMed  CAS  Google Scholar 

  65. He N, Liu M, Hsu J, et al. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell. 2010;38(3):428–38.

    Article  PubMed  CAS  Google Scholar 

  66. Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell. 2010;38(3):439–51.

    Article  PubMed  CAS  Google Scholar 

  67. Milcarek C, Martincic K, Chung-Ganster L-H, Lutz CS. The snRNP-associated U1A levels change following IL-6 stimulation of human B-cells. Mol Immunol. 2003;39:809–14.

    Article  PubMed  CAS  Google Scholar 

  68. Veraldi KL, Arhin GK, Martincic K, Chung-Ganster L, Wilusz J, Milcarek C. hnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B-cells. Mol Cell Biol. 2001;21:1228–38.

    Article  PubMed  CAS  Google Scholar 

  69. Bruce SR, Dingle RWC, Peterson ML. B-cell and plasma-cell splicing differences: a potential role in regulated immunoglobulin RNA processing. RNA. 2003;9(10):1264–73.

    Article  PubMed  CAS  Google Scholar 

  70. Vojnic E, Simon B, Strahl BD, Sattler M, Cramer P. Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription. J Biol Chem. 2006;281(1):13–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dewayne Falkner for help with the cell sorting. This work is supported by grant # MCB-0842725 from the National Science Foundation (CM), NIH ARO54529 (LB), AI079047 (LB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisa Borghesi or Christine Milcarek.

Additional information

Fortuna Arumemi is a co-first author of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, P., Arumemi, F., Park, K.S. et al. Transcriptional and epigenetic regulation of B cell development. Immunol Res 50, 105–112 (2011). https://doi.org/10.1007/s12026-011-8225-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-011-8225-y

Keywords

Navigation