Skip to main content
Log in

A tale of two TRAPs: LAT and LAB in the regulation of lymphocyte development, activation, and autoimmunity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Transmembrane adaptor proteins (TRAPs) link antigen receptor engagement to downstream cellular processes. Although these proteins typically lack intrinsic enzymatic activity, they are phosphorylated on multiple tyrosine residues following lymphocyte activation, allowing them to function as scaffolds for the assembly of multi-molecular signaling complexes. Among the many TRAPs that have been discovered in recent years, the LAT (linker for activation of T cells) family of adaptor proteins plays an important role in the positive and negative regulation of lymphocyte maturation, activation, and differentiation. Of the two members in this family, LAT is an indispensable component controlling T cell and mast cell activation and function; LAB (linker for activation of B cells), also called NTAL, is necessary to fine-tune lymphocyte activation and may be a key regulator of innate immune responses. Here, we review recent advances on the function of LAT and LAB in the regulation of development and activation of immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samelson LE. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol. 2002;20:371–94.

    Article  PubMed  CAS  Google Scholar 

  2. Horejsi V, Zhang W, Schraven B. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat Rev Immunol. 2004;4:603–16.

    Article  PubMed  CAS  Google Scholar 

  3. Finco TS, Kadlecek T, Zhang W, Samelson LE, Weiss A. LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway. Immunity. 1998;9:617–26.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang W, et al. Essential role of LAT in T cell development. Immunity. 1999;10:323–32.

    Article  PubMed  CAS  Google Scholar 

  5. Saitoh S, et al. LAT is essential for Fc (epsilon) RI-mediated mast cell activation. Immunity. 2000;12:525–35.

    Article  PubMed  CAS  Google Scholar 

  6. Brdicka T, et al. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J Exp Med. 2002;196:1617–26.

    Article  PubMed  CAS  Google Scholar 

  7. Janssen E, Zhu M, Zhang W, Koonpaew S, Zhang W. LAB: a new membrane-associated adaptor molecule in B cell activation. Nat Immunol. 2003;4:117–23.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu M, et al. Negative regulation of lymphocyte activation by the adaptor protein LAX. J Immunol. 2005;174:5612–9.

    PubMed  CAS  Google Scholar 

  9. Zhu M, et al. Negative regulation of T cell activation and autoimmunity by the transmembrane adaptor protein LAB. Immunity. 2006;25:757–68.

    Article  PubMed  CAS  Google Scholar 

  10. Koelsch U, Schraven B, Simeoni L. SIT and TRIM determine T cell fate in the thymus. J Immunol. 2008;181:5930–9.

    PubMed  CAS  Google Scholar 

  11. Davidson D, Bakinowski M, Thomas ML, Horejsi V, Veillette A. Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol. 2003;23:2017–28.

    Article  PubMed  CAS  Google Scholar 

  12. Brdicka T, et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J Exp Med. 2000;191:1591–604.

    Article  PubMed  CAS  Google Scholar 

  13. Smida M, Posevitz-Fejfar A, Horejsi V, Schraven B, Lindquist JA. A novel negative regulatory function of the phosphoprotein associated with glycosphingolipid-enriched microdomains: blocking Ras activation. Blood. 2007;110:596–615.

    Article  PubMed  CAS  Google Scholar 

  14. Hur EM, et al. LIME, a novel transmembrane adaptor protein, associates with p56lck and mediates T cell activation. J Exp Med. 2003;198:1463–73.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell. 1998;92:83–92.

    Article  PubMed  CAS  Google Scholar 

  16. Su YW, Jumaa H. LAT links the pre-BCR to calcium signaling. Immunity. 2003;19:295–305.

    Article  PubMed  CAS  Google Scholar 

  17. Facchetti F, et al. Linker for activation of T cells (LAT), a novel immunohistochemical marker for T cells, NK cells, mast cells, and megakaryocytes: evaluation in normal and pathological conditions. Am J Pathol. 1999;154:1037–46.

    Article  PubMed  CAS  Google Scholar 

  18. Weber JR, et al. Molecular cloning of the cDNA encoding pp36, a tyrosine-phosphorylated adaptor protein selectively expressed by T cells and natural killer cells. J Exp Med. 1998;187:1157–61.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang W, Irvin BJ, Trible RP, Abraham RT, Samelson LE. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int Immunol. 1999;11:943–50.

    Article  PubMed  CAS  Google Scholar 

  20. Liu SK, McGlade CJ. Gads is a novel SH2 and SH3 domain-containing adaptor protein that binds to tyrosine-phosphorylated Shc. Oncogene. 1998;17:3073–82.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang W, Trible RP, Zhu M, Liu SK, McGlade CJ, Samelson LE. Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell antigen receptor-mediated signaling. J Biol Chem. 2000;275:23355–61.

    Article  PubMed  CAS  Google Scholar 

  22. Lin J, Weiss A. Identification of the minimal tyrosine residues required for linker for activation of T cell function. J Biol Chem. 2001;276:29588–95.

    Article  PubMed  CAS  Google Scholar 

  23. Zhu M, Janssen E, Zhang W. Minimal requirement of tyrosine residues of linker for activation of T cells in TCR signaling and thymocyte development. J Immunol. 2003;170:325–33.

    PubMed  CAS  Google Scholar 

  24. Zhang W, Trible RP, Samelson LE. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity. 1998;9:239–46.

    Article  PubMed  CAS  Google Scholar 

  25. Zhu M, Shen S, Liu Y, Granillo O, Zhang W. Cutting edge: localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development. J Immunol. 2005;174:31–5.

    PubMed  CAS  Google Scholar 

  26. Otahal P, et al. A new type of membrane raft-like microdomains and their possible involvement in TCR signaling. J Immunol. 2010;184:3689–96.

    Article  PubMed  CAS  Google Scholar 

  27. Hundt M, et al. Impaired activation and localization of LAT in anergic T cells as a consequence of a selective palmitoylation defect. Immunity. 2006;24:513–22.

    Article  PubMed  CAS  Google Scholar 

  28. Shen S, Zhu M, Lau J, Chuck M, Zhang W. The essential role of LAT in thymocyte development during transition from the double-positive to single-positive stage. J Immunol. 2009;182:5596–604.

    Article  PubMed  CAS  Google Scholar 

  29. Sommers CL, et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science. 2002;296:2040–3.

    Article  PubMed  CAS  Google Scholar 

  30. Aguado E, et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science. 2002;296:2036–40.

    Article  PubMed  CAS  Google Scholar 

  31. Archambaud C, et al. STAT6 deletion converts the Th2 inflammatory pathology afflicting Lat (Y136F) mice into a lymphoproliferaltive disorder involving Th1 and CD8 effector T cells. J Immunol. 2009;182:2680–9.

    Article  PubMed  CAS  Google Scholar 

  32. Nunez-Cruz S, et al. LAT regulates gamma delta T cell homeostasis and differentiation. Nat Immunol. 2003;4:999–1008.

    Article  PubMed  CAS  Google Scholar 

  33. Sommers CL, et al. Mutation of the phospholipase C-gamma1-binding site of LAT affects both positive and negative thymocyte selection. J Exp Med. 2005;201:1125–34.

    Article  PubMed  CAS  Google Scholar 

  34. Wang Y, et al. Th2 lymphoproliferaltive disorder of LatY136F mutant mice unfolds independently of TCR-MHC engagement and is insensitive to the action of Foxp3+ regulatory T cells. J Immunol. 2008;180:1565–75.

    PubMed  CAS  Google Scholar 

  35. Koonpaew S, Shen S, Flowers L, Zhang W. LAT-mediated signaling in CD4+CD25+ regulatory T cell development. J Exp Med. 2006;203:119–29.

    Article  PubMed  CAS  Google Scholar 

  36. Chuck MI, Zhu M, Shen S, Zhang W. The role of the LAT-PLC-gamma1 interaction in T regulatory cell function. J Immunol. 2010;184:2476–86.

    Article  PubMed  CAS  Google Scholar 

  37. Shen S, Chuck MI, Zhu M, Fuller DM, Ou Yang CW, Zhang W. The importance of LAT in the activation, homeostasis, and regulatory function of T cells. J Biol Chem. 2010.

  38. Koonpaew S, Janssen E, Zhu M, Zhang W. The importance of three membrane-distal tyrosine’s in the adaptor protein NTAL/LAB. J Biol Chem. 2004;279:11229–35.

    Article  PubMed  CAS  Google Scholar 

  39. Janssen E, Zhu M, Craven B, Zhang W. Linker for activation of B cells: a functional equivalent of a mutant linker for activation of T cells deficient in phospholipase C-gamma1 binding. J Immunol. 2004;172:6810–9.

    PubMed  CAS  Google Scholar 

  40. Zhu M, Liu Y, Koonpaew S, Granillo O, Zhang W. Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL. J Exp Med. 2004;200:991–1000.

    Article  PubMed  CAS  Google Scholar 

  41. Wang Y, et al. Single and combined deletions of the NTAL/LAB and LAT adaptors minimally affect B-cell development and function. Mol Cell Biol. 2005;25:4455–65.

    Article  PubMed  CAS  Google Scholar 

  42. Stork B, et al. Grb2 and the non-T cell activation linker NTAL constitute a Ca (2+)-regulating signal circuit in B lymphocytes. Immunity. 2004;21:681–91.

    Article  PubMed  CAS  Google Scholar 

  43. Malhotra S, Kovats S, Zhang W, Coggeshall KM. Vav and Rac activation in B cell antigen receptor endocytosis involves Vav recruitment to the adapter protein LAB. J Biol Chem. 2009;284:36202–12.

    Article  PubMed  CAS  Google Scholar 

  44. Malhotra S, Kovats S, Zhang W, Coggeshall KM. B cell antigen receptor endocytosis and antigen presentation to T cells require Vav and dynamin. J Biol Chem. 2009;284:24088–97.

    Article  PubMed  CAS  Google Scholar 

  45. Denning TL, et al. Mouse TCRalphabeta + CD8alphaalpha intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J Immunol. 2007;178:4230–9.

    PubMed  CAS  Google Scholar 

  46. Tessarz AS, Weiler S, Zanzinger K, Angelisova P, Horejsi V, Cerwenka A. Non-T cell activation linker (NTAL) negatively regulates TREM-1/DAP12-induced inflammatory cytokine production in myeloid cells. J Immunol. 2007;178:1991–9.

    PubMed  CAS  Google Scholar 

  47. Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol. 2006;177:2051–5.

    PubMed  CAS  Google Scholar 

  48. Whittaker GC, et al. The linker for activation of B cells (LAB)/non-T cell activation linker (NTAL) regulates triggering receptor expressed on myeloid cells (TREM)-2 signaling and macrophage inflammatory responses independently of the linker for activation of T cells. J Biol Chem. 2010;285:2976–85.

    Article  PubMed  CAS  Google Scholar 

  49. Tkaczyk C, et al. NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and Fc epsilon RI aggregation. Blood. 2004;104:207–14.

    Article  PubMed  CAS  Google Scholar 

  50. Lebduska P, Korb J, Tumova M, Heneberg P, Draber P. Topography of signaling molecules as detected by electron microscopy on plasma membrane sheets isolated from non-adherent mast cells. J Immunol Methods. 2007;328:139–51.

    Article  PubMed  CAS  Google Scholar 

  51. Iwaki S, et al. Kit- and Fc epsilonRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cell Signal. 2008;20:195–205.

    Article  PubMed  CAS  Google Scholar 

  52. Dong S, et al. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. J Exp Med. 2006;203:2509–18.

    Article  PubMed  CAS  Google Scholar 

  53. Malbec O, et al. Linker for activation of T cells integrates positive and negative signaling in mast cells. J Immunol. 2004;173:5086–94.

    PubMed  CAS  Google Scholar 

  54. Roget K, Malissen M, Malbec O, Malissen B, Daeron M. Non-T cell activation linker promotes mast cell survival by dampening the recruitment of SHIP1 by linker for activation of T cells. J Immunol. 2008;180:3689–98.

    PubMed  CAS  Google Scholar 

  55. Yamasaki S, Ishikawa E, Kohno M, Saito T. The quantity and duration of FcRgamma signals determine mast cell degranulation and survival. Blood. 2004;103:3093–101.

    Article  PubMed  CAS  Google Scholar 

  56. Yamasaki S, et al. LAT and NTAL mediate immunoglobulin E-induced sustained extracellular signal-regulated kinase activation critical for mast cell survival. Mol Cell Biol. 2007;27:4406–15.

    Article  PubMed  CAS  Google Scholar 

  57. Galandrini R, Palmieri G, Piccoli M, Frati L, Santoni A. CD16-mediated p21ras activation is associated with Shc and p36 tyrosine phosphorylation and their binding with Grb2 in human natural killer cells. J Exp Med. 1996;183:179–86.

    Article  PubMed  CAS  Google Scholar 

  58. Valiante NM, Phillips JH, Lanier LL, Parham P. Killer cell inhibitory receptor recognition of human leukocyte antigen (HLA) class I blocks formation of a pp36/PLC-gamma signaling complex in human natural killer (NK) cells. J Exp Med. 1996;184:2243–50.

    Article  PubMed  CAS  Google Scholar 

  59. Chiesa S, et al. Multiplicity and plasticity of natural killer cell signaling pathways. Blood. 2006;107:2364–72.

    Article  PubMed  CAS  Google Scholar 

  60. Whittaker GC, et al. Analysis of the linker for activation of T cells and the linker for activation of B cells in natural killer cells reveals a novel signaling cassette, dual usage in ITAM signaling, and influence on development of the Ly49 repertoire. Blood. 2008;112:2869–77.

    Article  PubMed  CAS  Google Scholar 

  61. Matsuda S, et al. Negative feedback loop in T-cell activation through MAPK-catalyzed threonine phosphorylation of LAT. EMBO J. 2004;23:2577–85.

    Article  PubMed  CAS  Google Scholar 

  62. Fukata Y, Iwanaga T, Fukata M. Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods. 2006;40:177–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Heath grants AI048674 and AI056156 and Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuller, D.M., Zhu, M., Ou-Yang, CW. et al. A tale of two TRAPs: LAT and LAB in the regulation of lymphocyte development, activation, and autoimmunity. Immunol Res 49, 97–108 (2011). https://doi.org/10.1007/s12026-010-8197-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-010-8197-3

Keywords

Navigation