Skip to main content
Log in

Fine-tuning immune surveillance by fever-range thermal stress

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

An effectively orchestrated immune response to infection and disease depends on efficient trafficking of lymphocytes across vascular beds at distinct tissue sites. Local inflammation and systemic fever increase immune surveillance to immune-relevant sites throughout the body. During the initiation phase of inflammation, this tightly regulated process improves leukocyte trafficking to the secondary lymphoid organs where they undergo activation and expansion in response to cognate antigen. In the resolution phase following the clearance of the invading pathogen, lymphocyte entry is rapidly returned to baseline conditions. Specialized blood vessels termed high endothelial venules (HEVs) have emerged as critical ‘hotspots’ controlling the rate of lymphocyte entry into lymphoid organs during both phases of inflammation. In this review, we will examine the remarkably tight regulation of lymphocyte trafficking across HEVs conferred by inflammatory cues associated with the thermal element of fever. These studies have revealed a novel role for interleukin-6 (IL-6) trans-signaling in eliciting systemic effects on lymphocyte trafficking patterns to fine-tune immune surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005;6:1182–90.

    Article  PubMed  CAS  Google Scholar 

  2. Butcher EC, Williams M, Youngman K, Rott L, Briskin M. Lymphocyte trafficking and regional immunity. Adv Immunol. 1999;72:209–53.

    Article  PubMed  CAS  Google Scholar 

  3. von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003;3:867–78.

    Article  CAS  Google Scholar 

  4. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.

    Article  PubMed  CAS  Google Scholar 

  5. Pabst R, Binns RM. Heterogeneity of lymphocyte homing physiology: several mechanisms operate in the control of migration to lymphoid and non-lymphoid organs in vivo. Immunol Rev. 1989;108:83–109.

    Article  PubMed  CAS  Google Scholar 

  6. Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med. 2002;195:657–64.

    Article  PubMed  CAS  Google Scholar 

  7. Springer TA. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol. 1995;57:827–72.

    Article  PubMed  CAS  Google Scholar 

  8. Bajenoff M, Egen JG, Qi H, Huang AY, Castellino F, Germain RN. Highways, byways and breadcrumbs: directing lymphocyte traffic in the lymph node. Trends Immunol. 2007;28:346–52.

    Article  PubMed  CAS  Google Scholar 

  9. Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol. 2004;4:360–70.

    Article  PubMed  CAS  Google Scholar 

  10. von Andrian UH. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation. 1996;3:287–300.

    Article  PubMed  CAS  Google Scholar 

  11. Martin-Fontecha A, Baumjohann D, Guarda G, Reboldi A, Hons M, Lanzavecchia A, et al. CD40L+ CD4+ memory T cells migrate in a CD62P-dependent fashion into reactive lymph nodes and license dendritic cells for T cell priming. J Exp Med. 2008;205:2561–74.

    Article  PubMed  CAS  Google Scholar 

  12. Martin-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A, et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med. 2003;198:615–21.

    Article  PubMed  CAS  Google Scholar 

  13. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat Immunol. 2004;5:1260–5.

    Article  PubMed  CAS  Google Scholar 

  14. Janatpour MJ, Hudak S, Sathe M, Sedgwick JD, McEvoy LM. Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J Exp Med. 2001;194:1375–84.

    Article  PubMed  CAS  Google Scholar 

  15. Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med. 2001;194:1361–73.

    Article  PubMed  CAS  Google Scholar 

  16. Nakano H, Lin KL, Yanagita M, Charbonneau C, Cook DN, Kakiuchi T, et al. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat Immunol. 2009;10:394–402.

    Article  PubMed  CAS  Google Scholar 

  17. Guarda G, Hons M, Soriano SF, Huang AY, Polley R, Martin-Fontecha A, et al. L-selectin-negative CCR7 effector and memory CD8+ T cells enter reactive lymph nodes and kill dendritic cells. Nat Immunol. 2007;8:743–52.

    Article  PubMed  CAS  Google Scholar 

  18. Soderberg KA, Payne GW, Sato A, Medzhitov R, Segal SS, Iwasaki A. Innate control of adaptive immunity via remodeling of lymph node feed arteriole. Proc Natl Acad Sci USA. 2005;102:16315–20.

    Article  PubMed  CAS  Google Scholar 

  19. Webster B, Ekland EH, Agle LM, Chyou S, Ruggieri R, Lu TT. Regulation of lymph node vascular growth by dendritic cells. J Exp Med. 2006;203:1903–13.

    Article  PubMed  CAS  Google Scholar 

  20. Chyou S, Ekland EH, Carpenter AC, Tzeng TC, Tian S, Michaud M, et al. Fibroblast-type reticular stromal cells regulate the lymph node vasculature. J Immunol. 2008;181:3887–96.

    PubMed  CAS  Google Scholar 

  21. Evans SS, Wang WC, Bain MD, Burd R, Ostberg JR, Repasky EA. Fever-range hyperthermia dynamically regulates lymphocyte delivery to high endothelial venules. Blood. 2001;97:2727–33.

    Article  PubMed  CAS  Google Scholar 

  22. Evans SS, Schleider DM, Bowman LA, Francis ML, Kansas GS, Black JD. Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix. J Immunol. 1999;162:3615–24.

    PubMed  CAS  Google Scholar 

  23. Wang WC, Goldman LM, Schleider DM, Appenheimer MM, Subjeck JR, Repasky EA, et al. Fever-range hyperthermia enhances L-selectin-dependent adhesion of lymphocytes to vascular endothelium. J Immunol. 1998;160:961–9.

    PubMed  CAS  Google Scholar 

  24. Chen Q, Wang WC, Bruce R, Li H, Schleider DM, Mulbury MJ, et al. Central role of IL-6 receptor signal-transducing chain gp130 in activation of L-selectin adhesion by fever-range thermal stress. Immunity. 2004;20:59–70.

    Article  PubMed  CAS  Google Scholar 

  25. Evans SS, Bain MD, Wang WC. Fever-range hyperthermia stimulates α4β7 integrin-dependent lymphocyte-endothelial adhesion. Int J Hyperthermia. 2000;16:45–59.

    Article  PubMed  CAS  Google Scholar 

  26. Appenheimer MM, Chen Q, Girard RA, Wang WC, Evans SS. Impact of fever-range thermal stress on lymphocyte-endothelial adhesion and lymphocyte trafficking. Immunol Invest. 2005;34:295–323.

    Article  PubMed  CAS  Google Scholar 

  27. Chen Q, Fisher DT, Kucinska SA, Wang WC, Evans SS. Dynamic control of lymphocyte trafficking by fever-range thermal stress. Cancer Immunol Immunother. 2006;55:299–311.

    Article  PubMed  Google Scholar 

  28. Chen Q, Fisher DT, Clancy KA, Gauguet JM, Wang WC, Unger E, et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol. 2006;7:1299–308.

    Article  PubMed  CAS  Google Scholar 

  29. Chen Q, Clancy KA, Wang WC, Evans SS. Inflammatory cues controlling lymphocyte-endothelial interactions during fever-range thermal stress. In: Aird W, editor. Endothelial biomedicine. Cambridge: Cambridge University Press; 2007. p. 471–9.

    Google Scholar 

  30. Chen Q, Appenheimer MM, Muhitch JB, Fisher DT, Clancy KA, Miecznikowski JC, et al. Thermal facilitation of lymphocyte trafficking involves temporal induction of intravascular ICAM-1. Microcirculation. 2009;16:143–58.

    Article  PubMed  CAS  Google Scholar 

  31. Roberts NJ Jr. Impact of temperature elevation on immunologic defenses. Rev Infect Dis. 1991;13:462–72.

    PubMed  Google Scholar 

  32. Kluger MJ, Kozak W, Conn CA, Leon LR, Soszynski D. Role of fever in disease. Ann NY Acad Sci. 1998;856:224–33.

    Article  PubMed  CAS  Google Scholar 

  33. Hasday JD, Fairchild KD, Shanholtz C. The role of fever in the infected host. Microbes Infect. 2000;2:1891–904.

    Article  PubMed  CAS  Google Scholar 

  34. Burd R, Dziedzic TS, Xu Y, Caligiuri MA, Subjeck JR, Repasky EA. Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia. J Cell Physiol. 1998;177:137–47.

    Article  PubMed  CAS  Google Scholar 

  35. Kraybill WG, Olenki T, Evans SS, Ostberg JR, O’Leary KA, Gibbs JF, et al. A phase I study of fever-range whole body hyperthermia (FR-WBH) in patients with advanced solid tumours: correlation with mouse models. Int J Hyperthermia. 2002;18:253–66.

    Article  PubMed  CAS  Google Scholar 

  36. Ostberg JR, Gellin C, Patel R, Repasky EA. Regulatory potential of fever-range whole body hyperthermia on Langerhans cells and lymphocytes in an antigen-dependent cellular immune response. J Immunol. 2001;167:2666–70.

    PubMed  CAS  Google Scholar 

  37. Ostberg JR, Repasky EA. Comparison of the effects of two different whole body hyperthermia protocols on the distribution of murine leukocyte populations. Int J Hyperthermia. 2000;16:29–43.

    Article  PubMed  CAS  Google Scholar 

  38. Pritchard MT, Ostberg JR, Evans SS, Burd R, Kraybill W, Bull JM, et al. Protocols for simulating the thermal component of fever: preclinical and clinical experience. Methods. 2004;32:54–62.

    Article  PubMed  CAS  Google Scholar 

  39. Ahlers O, Hildebrandt B, Dieing A, Deja M, Bohnke T, Wust P, et al. Stress induced changes in lymphocyte subpopulations and associated cytokines during whole body hyperthermia of 41.8–42.2°C. Eur J Appl Physiol. 2005;95:298–306.

    Article  PubMed  CAS  Google Scholar 

  40. Atanackovic D, Nierhaus A, Neumeier M, Hossfeld DK, Hegewisch-Becker S. 41.8°C whole body hyperthermia as an adjunct to chemotherapy induces prolonged T cell activation in patients with various malignant diseases. Cancer Immunol Immunother. 2002;51:603–13.

    Article  PubMed  CAS  Google Scholar 

  41. Atanackovic D, Pollok K, Faltz C, Boeters I, Jung R, Nierhaus A, et al. Patients with solid tumors treated with high-temperature whole body hyperthermia show a redistribution of naive/memory T-cell subtypes. Am J Physiol Regul Integr Comp Physiol. 2006;290:R585–94.

    PubMed  CAS  Google Scholar 

  42. Rosen SD. Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol. 2004;22:129–56.

    Article  PubMed  CAS  Google Scholar 

  43. Pavalko FM, Walker DM, Graham L, Goheen M, Doerschuk CM, Kansas GS. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via α-actinin: receptor positioning in microvilli does not require interaction with α-actinin. J Cell Biol. 1995;129:1155–64.

    Article  PubMed  CAS  Google Scholar 

  44. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, et al. α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell. 1995;80:413–22.

    Article  PubMed  CAS  Google Scholar 

  45. Andrew DP, Berlin C, Honda S, Yoshino T, Hamann A, Holzmann B, et al. Distinct but overlapping epitopes are involved in α4β7-mediated adhesion to vascular cell adhesion molecule-1, mucosal addressin-1, fibronectin, and lymphocyte aggregation. J Immunol. 1994;153:3847–61.

    PubMed  CAS  Google Scholar 

  46. Kamata T, Puzon W, Takada Y. Identification of putative ligand-binding sites of the integrin α4β1 (VLA-4, CD49d/CD29). Biochem J. 1995;305(Pt 3):945–51.

    PubMed  CAS  Google Scholar 

  47. Tidswell M, Pachynski R, Wu SW, Qiu SQ, Dunham E, Cochran N, et al. Structure–function analysis of the integrin β7 subunit: identification of domains involved in adhesion to MAdCAM-1. J Immunol. 1997;159:1497–505.

    PubMed  CAS  Google Scholar 

  48. Vardam TD, Zhou L, Appenheimer MM, Chen Q, Wang WC, Baumann H, et al. Regulation of a lymphocyte–endothelial–IL-6 trans-signaling axis by fever-range thermal stress: hot spot of immune surveillance. Cytokine. 2007;39:84–96.

    Article  PubMed  CAS  Google Scholar 

  49. Evans SS, Fisher DT, Skitzki JJ, Chen Q. Targeted regulation of a lymphocyte-endothelial-interleukin-6 axis by thermal stress. Int J Hyperthermia. 2008;24:67–78.

    Article  PubMed  CAS  Google Scholar 

  50. Appenheimer MM, Girard RA, Chen Q, Wang WC, Bankert KC, Hardison J, et al. Conservation of IL-6 trans-signaling mechanisms controlling L-selectin adhesion by fever-range thermal stress. Eur J Immunol. 2007;37:2856–67.

    Article  PubMed  CAS  Google Scholar 

  51. Jones SA. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol. 2005;175:3463–8.

    PubMed  CAS  Google Scholar 

  52. Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol. 2006;80:227–36.

    Article  PubMed  CAS  Google Scholar 

  53. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20.

    Article  PubMed  CAS  Google Scholar 

  54. Jones SA, Rose-John S. The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. Biochim Biophys Acta. 2002;1592:251–63.

    Article  PubMed  CAS  Google Scholar 

  55. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity. 1997;6:315–25.

    Article  PubMed  CAS  Google Scholar 

  56. Wung BS, Hsu MC, Wu CC, Hsieh CW. Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells: effects on the inhibition of STAT3 phosphorylation. Life Sci. 2005;78:389–97.

    Article  PubMed  CAS  Google Scholar 

  57. Chen SC, Chang YL, Wang DL, Cheng JJ. Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br J Pharmacol. 2006;148:226–32.

    Article  PubMed  CAS  Google Scholar 

  58. Sithu SD, English WR, Olson P, Krubasik D, Baker AH, Murphy G, et al. Membrane-type 1-matrix metalloproteinase regulates intracellular adhesion molecule-1 (ICAM-1)-mediated monocyte transmigration. J Biol Chem. 2007;282:25010–9.

    Article  PubMed  CAS  Google Scholar 

  59. Tsakadze NL, Sithu SD, Sen U, English WR, Murphy G, D’Souza SE. Tumor necrosis factor-α-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J Biol Chem. 2006;281:3157–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Michelle M. Appenheimer, Dr. Qing Chen, and Dr. Wan-Chao Wang for seminal contributions to the work on fever-range thermal stress and to M.M.A. for review of the manuscript. This work was supported by grants from the NIH (CA79765, CA094045 and AI082039) and the Roswell Park Alliance Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon S. Evans.

Additional information

Daniel T. Fisher and Trupti D. Vardam contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, D.T., Vardam, T.D., Muhitch, J.B. et al. Fine-tuning immune surveillance by fever-range thermal stress. Immunol Res 46, 177–188 (2010). https://doi.org/10.1007/s12026-009-8122-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8122-9

Keywords

Navigation