Skip to main content

Advertisement

Log in

The sticky business of histone H2AX in V(D)J recombination, maintenance of genomic stability, and suppression of lymphoma

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

DNA double strand breaks (DSBs) induced during cellular metabolism, DNA replication, and genomic rearrangement events lead to phosphorylation of the H2AX core histone variant in surrounding chromatin. H2AX is essential for normal DSB repair, maintenance of genomic stability, and suppression of lymphomas with clonal translocations and intra-chromosomal deletions. One current focus of our lab is to elucidate mechanisms through which H2AX functions in the cellular DNA damage response using V(D)J recombination as a model system. A number of potential H2AX functions can be readily tested using novel experimental approaches developed in our lab. These putative functions include: (1) modulation of chromatin accessibility to facilitate kinetics of DSB repair, (2) stabilization of broken DNA strands to maintain ends in close proximity, and (3) amplification of DNA damage signals. Here, we summarize our recent efforts in elucidating mechanisms by which H2AX functions during V(D)J recombination to coordinate DSB repair with cellular proliferation and survival to prevent translocations and suppress lymphomagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mills KD, Ferguson DO, Alt FW. The role of DNA breaks in genomic instability and tumorigenesis. Immunol Rev. 2003;194:77–95.

    Article  PubMed  CAS  Google Scholar 

  2. van Gent DC, Hoeijmakers JH, Kanaar R. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet. 2001;2:196–206.

    Article  PubMed  Google Scholar 

  3. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.

    Article  PubMed  CAS  Google Scholar 

  4. Forterre P, Gribaldo S, Gadelle D, Serre MC. Origin and evolution of DNA topoisomerases. Biochimie. 2007;89:427–46.

    Article  PubMed  CAS  Google Scholar 

  5. Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol. 2007;94:157–214.

    Article  PubMed  CAS  Google Scholar 

  6. Schatz DG, Spanopoulou E. Biochemistry of V(D)J recombination. Curr Top Microbiol Immunol. 2005;290:49–85.

    Article  PubMed  CAS  Google Scholar 

  7. Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell. 2002;109(Suppl):S45–55.

    Article  PubMed  CAS  Google Scholar 

  8. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.

    Article  PubMed  CAS  Google Scholar 

  9. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis. 2002;23:687–96.

    Article  PubMed  CAS  Google Scholar 

  10. Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4:712–20.

    Article  PubMed  CAS  Google Scholar 

  11. Rooney S, Chaudhuri J, Alt FW. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev. 2004;200:115–31.

    Article  PubMed  CAS  Google Scholar 

  12. Wyman C, Ristic D, Kanaar R. Homologous recombination-mediated double-strand break repair. DNA Repair (Amst). 2004;3:827–33.

    Article  CAS  Google Scholar 

  13. Yan CT, Boboila C, Souza EK, Franco S, Hickernell TR, Murphy M, et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature. 2007;449:478–82.

    Article  PubMed  CAS  Google Scholar 

  14. Nussenzweig A, Nussenzweig MC. A backup DNA repair pathway moves to the forefront. Cell. 2007;131:223–5.

    Article  PubMed  CAS  Google Scholar 

  15. Bennardo N, Cheng A, Huang N, Stark JM. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 2008;4:e1000110.

    Google Scholar 

  16. Dahm K. Role and regulation of human XRCC4-like factor/cernunnos. J Cell Biochem. 2008; [Epub ahead of print]. doi:10.1002/jcb.21726.

  17. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    Article  PubMed  CAS  Google Scholar 

  18. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999;146:905–16.

    Article  PubMed  CAS  Google Scholar 

  19. Fernandez-Capetillo O, Lee A, Nussenzweig MC, Nussenzweig A. H2AX: the histone guardian of the genome. DNA Repair (Amst). 2004;3:959–67.

    Article  CAS  Google Scholar 

  20. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276:42462–7.

    Article  PubMed  CAS  Google Scholar 

  21. Park EJ, Chan DW, Park JH, Oettinger MA, Kwon J. DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res. 2003;31:6819–27.

    Article  PubMed  CAS  Google Scholar 

  22. Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Löbrich M, Jeggo PA. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004;64:2390–6.

    Article  PubMed  CAS  Google Scholar 

  23. Ward IM, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem. 2001;276:47759–62.

    Article  PubMed  CAS  Google Scholar 

  24. Furuta T, Takemura H, Liao ZY, Aune GJ, Redon C, Sedelnikova OA, et al. Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA-double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J Biol Chem. 2003;278:20303–12.

    Article  PubMed  CAS  Google Scholar 

  25. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10:886–95.

    Article  PubMed  CAS  Google Scholar 

  26. Canman CE. Checkpoint mediators: relaying signals from DNA strand breaks. Curr Biol. 2003;13:R488–90.

    Article  PubMed  CAS  Google Scholar 

  27. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, et al. Genomic instability in mice lacking histone H2AX. Science. 2002;296:922–7.

    Article  PubMed  CAS  Google Scholar 

  28. Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci USA. 2002;99:8173–8.

    Article  PubMed  CAS  Google Scholar 

  29. Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M, et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell. 2003;114:359–70.

    Article  PubMed  CAS  Google Scholar 

  30. Franco S, Gostissa M, Zha S, Lombard DB, Murphy MM, Zarrin AA, et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol Cell. 2006;21:201–14.

    Article  PubMed  CAS  Google Scholar 

  31. Xie A, Puget N, Shim I, Odate S, Jarzyna I, Bassing CH, et al. Control of sister chromatid recombination by histone H2AX. Mol Cell. 2004;16:1017–25.

    Article  PubMed  CAS  Google Scholar 

  32. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 2003;5:675–9.

    Article  PubMed  CAS  Google Scholar 

  33. Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol. 2002;4:993–7.

    Article  PubMed  CAS  Google Scholar 

  34. Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA, et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell. 2003;114:371–83.

    Article  PubMed  CAS  Google Scholar 

  35. Stucki M, Jackson SP. gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair (Amst). 2006;5:534–43.

    Article  CAS  Google Scholar 

  36. Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A, et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell. 2006;21:187–200.

    Article  PubMed  CAS  Google Scholar 

  37. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005;123:1213–26.

    Article  PubMed  CAS  Google Scholar 

  38. Spycher C, Miller ES, Townsend K, Pavic L, Morrice NA, Janscak P, et al. Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin. J Cell Biol. 2008;181:227–40.

    Article  PubMed  CAS  Google Scholar 

  39. Melander F, Bekker-Jensen S, Falck J, Bartek J, Mailand N, Lukas J. Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J Cell Biol. 2008;181:213–26.

    Article  PubMed  CAS  Google Scholar 

  40. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell. 2007;131:901–14.

    Article  PubMed  CAS  Google Scholar 

  41. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell. 2007;131:887–900.

    Article  PubMed  CAS  Google Scholar 

  42. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science. 2007;318:1637–40.

    Article  PubMed  CAS  Google Scholar 

  43. Bassing CH, Alt FW. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle. 2004;3:149–53.

    PubMed  CAS  Google Scholar 

  44. Squatrito M, Gorrini C, Amati B. Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol. 2006;16:433–42.

    Article  PubMed  CAS  Google Scholar 

  45. Li Z, Dordai DI, Lee J, Desiderio S. A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity. 1996;5:575–89.

    Article  PubMed  Google Scholar 

  46. Pedraza-Alva G, Koulnis M, Charland C, Thornton T, Clements JL, Schlissel MS, et al. Activation of p38 MAP kinase by DNA double-strand breaks in V(D)J recombination induces a G2/M cell cycle checkpoint. EMBO J. 2006;25:763–73.

    Article  PubMed  CAS  Google Scholar 

  47. Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature. 2006;442:466–70.

    Article  PubMed  CAS  Google Scholar 

  48. Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, et al. RAG mutations in human B cell-negative SCID. Science. 1996;274:97–9.

    Article  PubMed  CAS  Google Scholar 

  49. Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell. 2001;105:177–86.

    Article  PubMed  CAS  Google Scholar 

  50. Riballo E, Critchlow SE, Teo SH, Doherty AJ, Priestley A, Broughton B, et al. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol. 1999;9:699–702.

    Article  PubMed  CAS  Google Scholar 

  51. O’Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell. 2001;8:1175–85.

    Article  PubMed  CAS  Google Scholar 

  52. van der Burg M, van Veelen LR, Verkaik NS, Wiegant WW, Hartwig NG, Barendregt BH, et al. A new type of radiosensitive TBNK+ severe combined immunodeficiency caused by a LIG4 mutation. J Clin Invest. 2006;116:137–45.

    Article  PubMed  Google Scholar 

  53. van Gent DC, van der Burg M. Non-homologous end-joining, a sticky affair. Oncogene. 2007;26:7731–40.

    Article  PubMed  Google Scholar 

  54. Difilippantonio MJ, Petersen S, Chen HT, Johnson R, Jasin M, Kanaar R, et al. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med. 2002;196:469–80.

    Article  PubMed  CAS  Google Scholar 

  55. Gladdy RA, Taylor MD, Williams CJ, Grandal I, Karaskova J, Squire JA, et al. The RAG-1/2 endonuclease causes genomic instability and controls CNS complications of lymphoblastic leukemia in p53/Prkdc-deficient mice. Cancer Cell. 2003;3:37–50.

    Article  PubMed  CAS  Google Scholar 

  56. Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J, et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell. 2002;109:811–21.

    Article  PubMed  CAS  Google Scholar 

  57. Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E, et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet. 1997;17:423–30.

    Article  PubMed  CAS  Google Scholar 

  58. Mak TW, Hakem A, McPherson JP, Shehabeldin A, Zablocki E, Migon E, et al. Brcal required for T cell lineage development but not TCR loci rearrangement. Nat Immunol. 2000;1:77–82.

    Article  PubMed  CAS  Google Scholar 

  59. Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA, et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet. 2001;28:266–71.

    Article  PubMed  CAS  Google Scholar 

  60. Cheung AM, Hande MP, Jalali F, Tsao MS, Skinnider B, Hirao A, et al. Loss of Brca2 and p53 synergistically promotes genomic instability and deregulation of T-cell apoptosis. Cancer Res. 2002;62:6194–204.

    PubMed  CAS  Google Scholar 

  61. Chen HT, Bhandoola A, Difilippantonio MJ, Zhu J, Brown MJ, Tai X, et al. Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science. 2000;290:1962–5.

    Article  PubMed  CAS  Google Scholar 

  62. Bassing CH, Ranganath S, Murphy M, Savic V, Gleason M, Alt FW. Aberrant V(D)J recombination is not required for rapid development of H2ax/p53-deficient thymic lymphomas with clonal translocations. Blood. 2008;111:2163–9.

    Article  PubMed  CAS  Google Scholar 

  63. Muljo SA, Schlissel MS. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat Immunol. 2003;4:31–7.

    Article  PubMed  CAS  Google Scholar 

  64. Shiloh Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet. 1997;31:635–62.

    Article  PubMed  CAS  Google Scholar 

  65. Vacchio MS, Olaru A, Livak F, Hodes RJ. ATM deficiency impairs thymocyte maturation because of defective resolution of T cell receptor alpha locus coding end breaks. Proc Natl Acad Sci USA. 2007;104:6323–8.

    Article  PubMed  CAS  Google Scholar 

  66. Callén E, Jankovic M, Difilippantonio S, Daniel JA, Chen HT, Celeste A. ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell. 2007;130:63–75.

    Article  PubMed  Google Scholar 

  67. Reina-San-Martin B, Chen HT, Nussenzweig A, Nussenzweig MC. ATM is required for efficient recombination between immunoglobulin switch regions. J Exp Med. 2004;200:1103–10.

    Article  PubMed  CAS  Google Scholar 

  68. Franco S, Murphy MM, Li G, Borjeson T, Boboila C, Alt FW. DNA-PKcs and Artemis function in the end-joining phase of immunoglobulin heavy chain class switch recombination. J Exp Med. 2008;205:557–64.

    Article  PubMed  CAS  Google Scholar 

  69. Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell. 2004;16:991–1002.

    Article  PubMed  Google Scholar 

  70. Corneo B, Wendland RL, Deriano L, Cui X, Klein IA, Wong SY, et al. Rag mutations reveal robust alternative end joining. Nature. 2007;449:483–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C.H.B. is a Pew Scholar in the Biomedical Sciences. This work was supported by the Department of Pathology and Center for Childhood Cancer Research of the Children’s Hospital of Philadelphia (C.H.B.), the Abramson Family Cancer Research Institute (C.H.B.), and the National Cancer Institute Grant CA125195 (C.H.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig H. Bassing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, B., Bassing, C.H. The sticky business of histone H2AX in V(D)J recombination, maintenance of genomic stability, and suppression of lymphoma. Immunol Res 42, 29–40 (2008). https://doi.org/10.1007/s12026-008-8030-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8030-4

Keywords

Navigation