Skip to main content

Advertisement

Log in

Immunoregulation of fetal and anti-paternal immune responses

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Immunological tolerance to the fetus is essential for fetal survival during pregnancy. The semi-allogeneic fetus expresses genes foreign to the mother that can be recognized by maternal T cells. Under times of stress or infection, deleterious immune responses can result in fetal destruction and/or maternal death. Exposure to non-maternal antigens begins as early as insemination and some of the mechanisms required to prevent maternal priming against these antigens are in place before sexual encounter. Continuous and overlapping regulatory mechanisms must cooperate to allow the best chances for fertilization, implantation, and healthy gestation, simultaneously protecting the fetus from maternal immune attack yet making minimal compromises in resistance to infection. Several types of immune cell from both the innate and adaptive arms of the immune system help protect both the mother and fetus during pregnancy. It’s the intricate communication and interplay between the immune system and the endocrine system that will ultimately decide the success or fate of the developing fetus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FRT:

Female reproductive tract

DC:

Dendritic cell

E2:

17β-estradiol

References

  1. Mellor AL, Munn DH. Immunology at the maternal–fetal interface: lessons for T cell tolerance and suppression. Annu Rev Immunol 2000;18:367–91.

    Article  PubMed  CAS  Google Scholar 

  2. Robertson SA, Sharkey DJ. The role of semen in induction of maternal immune tolerance to pregnancy. Semin Immunol 2001;13(4):243–54.

    Article  PubMed  CAS  Google Scholar 

  3. Fiszer D, Ulbrecht M, Fernandez N, Johnson JP, Weiss EH, Kurpisz M. Analysis of HLA class Ib gene expression in male gametogenic cells. Eur J Immunol 1997;27(7):1691–5.

    Article  PubMed  CAS  Google Scholar 

  4. Martin-Villa JM, Luque I, Martinez-Quiles N, Corell A, Regueiro JR, Timon M, et al. Diploid expression of human leukocyte antigen class I and class II molecules on spermatozoa and their cyclic inverse correlation with inhibin concentration. Biol Reprod 1996;55(3):620–9.

    Article  PubMed  CAS  Google Scholar 

  5. Guillaudeux T, Gomez E, Onno M, Drenou B, Segretain D, Alberti S, et al. Expression of HLA class I genes in meiotic and post-meiotic human spermatogenic cells. Biol Reprod 1996;55(1):99–110.

    Article  PubMed  CAS  Google Scholar 

  6. Sills ES, Kirman I, Colombero LT, Hariprashad J, Rosenwaks Z, Palermo GD. H-Y antigen expression patterns in human X- and Y-chromosome-bearing spermatozoa. Am J Reprod Immunol 1998;40(1):43–7.

    PubMed  CAS  Google Scholar 

  7. Seavey MM, Mosmann TR. Paternal antigen-bearing cells transferred during insemination do not stimulate anti-paternal CD8+ T cells: role of estradiol in locally inhibiting CD8+ T cell responses. J Immunol 2006;177(11):7567–78.

    PubMed  CAS  Google Scholar 

  8. Pang SF, Chow PH, Wong TM. The role of the seminal vesicles, coagulating glands and prostate glands on the fertility and fecundity of mice. J Reprod Fertil 1979;56(1):129–32.

    PubMed  CAS  Google Scholar 

  9. Chow PH, Pang SF, Ng KW, Wong TM. Fertility, fecundity, sex ratio and the accessory sex glands in male golden hamsters. Int J Androl 1986;9(4):312–20.

    Article  PubMed  CAS  Google Scholar 

  10. O WS, Chen HQ, Chow PH. Effects of male accessory sex gland secretions on early embryonic development in the golden hamster. J Reprod Fertil 1988;84(1):341–4.

    PubMed  CAS  Google Scholar 

  11. Bellinge BS, Copeland CM, Thomas TD, Mazzucchelli RE, O’Neil G, Cohen MJ. The influence of patient insemination on the implantation rate in an in vitro fertilization and embryo transfer program. Fertil Steril 1986;46(2):252–6.

    PubMed  CAS  Google Scholar 

  12. Tremellen KP, Valbuena D, Landeras J, Ballesteros A, Martinez J, Mendoza S, et al. The effect of intercourse on pregnancy rates during assisted human reproduction. Hum Reprod 2000;15(12):2653–8.

    Article  PubMed  CAS  Google Scholar 

  13. Gopichandran N, Ekbote UV, Walker JJ, Brooke D, Orsi NM. Multiplex determination of murine seminal fluid cytokine profiles. Reproduction 2006;131(3):613–21.

    Article  PubMed  CAS  Google Scholar 

  14. Alan E, Beer REB. Host responses to intra-uterine tissue, cellular and fetal allografts. J Reprod Fert 1974;21(Suppl.):59–88.

    Google Scholar 

  15. Ober C. Studies of HLA, fertility and mate choice in a human isolate. Hum Reprod Update 1999;5(2):103–7.

    Article  PubMed  CAS  Google Scholar 

  16. McKarns SC, Schwartz RH. Distinct effects of TGF-beta 1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: a role for T cell intrinsic Smad3. J Immunol 2005;174(4):2071–83.

    PubMed  CAS  Google Scholar 

  17. Robertson SA, Bromfield JJ, Tremellen KP. Seminal ‘priming’ for protection from pre-eclampsia-a unifying hypothesis. J Reprod Immunol 2003;59(2):253–65.

    Article  PubMed  Google Scholar 

  18. Robertson SA. Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res 2005;322:43–52.

    Google Scholar 

  19. Inada K, Hayashi S, Iguchi T, Sato T. Establishment of a primary culture model of mouse uterine and vaginal stroma for studying in vitro estrogen effects. Exp Biol Med (Maywood) 2006;231(3):303–10.

    CAS  Google Scholar 

  20. Domino SE, Hurd EA. LacZ expression in Fut2-LacZ reporter mice reveals estrogen-regulated endocervical glandular expression during estrous cycle, hormone replacement, and pregnancy. Glycobiology 2004;14(2):169–75.

    Article  PubMed  CAS  Google Scholar 

  21. Black CA, Rohan LC, Cost M, Watkins SC, Draviam R, Alber S, et al. Vaginal mucosa serves as an inductive site for tolerance. J Immunol 2000;165(9):5077–83.

    PubMed  CAS  Google Scholar 

  22. Fahey JV, Prabhala RH, Guyre PM, Wira CR. Antigen-presenting cells in the human female reproductive tract: analysis of antigen presentation in pre- and post-menopausal women. Am J Reprod Immunol 1999;42(1):49–57.

    PubMed  CAS  Google Scholar 

  23. Wira CR, Crane-Godreau MA, Grant KS. Endocrine regulation of the mucosal immune system in the female reproductive tract. In: Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer L, editors. Mucosal immunology, 3rd edn. USA: Elsevier Academic Press; 2005. p. 1661–75.

  24. Sun JC, Williams MA, Bevan MJ. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 2004;5(9):927–33.

    Article  PubMed  CAS  Google Scholar 

  25. Vegeto E, Belcredito S, Etteri S, Ghisletti S, Brusadelli A, Meda C, et al. Estrogen receptor-alpha mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci USA 2003;100(16):9614–9.

    Article  PubMed  CAS  Google Scholar 

  26. Carlsten H. Immune responses and bone loss: the estrogen connection. Immunol Rev 2005;208:194–206.

    Article  PubMed  CAS  Google Scholar 

  27. Mor G, Sapi E, Abrahams VM, Rutherford T, Song J, Hao XY, et al. Interaction of the estrogen receptors with the Fas ligand promoter in human monocytes. J Immunol 2003;170(1):114–22.

    PubMed  CAS  Google Scholar 

  28. Lezama-Davila CM, Isaac-Marquez AP, Barbi J, Oghumu S, Satoskar AR. 17Beta-estradiol increases Leishmania mexicana killing in macrophages from DBA/2 mice by enhancing production of nitric oxide but not pro-inflammatory cytokines. Am J Trop Med Hyg 2007;76(6):1125–7.

    PubMed  CAS  Google Scholar 

  29. Werb Z, Foley R, Munck A. Glucocorticoid receptors and glucocorticoid-sensitive secretion of neutral proteinases in a macrophage line. J Immunol 1978;121(1):115–21.

    PubMed  CAS  Google Scholar 

  30. Givan AL, White HD, Stern JE, Colby E, Gosselin EJ, Guyre PM, et al. Flow cytometric analysis of leukocytes in the human female reproductive tract: comparison of fallopian tube, uterus, cervix, and vagina. Am J Reprod Immunol 1997;38(5):350–9.

    PubMed  CAS  Google Scholar 

  31. Arici A, Senturk LM, Seli E, Bahtiyar MO, Kim G. Regulation of monocyte chemotactic protein-1 expression in human endometrial stromal cells by estrogen and progesterone. Biol Reprod 1999;61(1):85–90.

    Article  PubMed  CAS  Google Scholar 

  32. Akoum A, Jolicoeur C, Boucher A. Estradiol amplifies interleukin-1-induced monocyte chemotactic protein-1 expression by ectopic endometrial cells of women with endometriosis. J Clin Endocrinol Metab 2000;85(2):896–904.

    Article  PubMed  CAS  Google Scholar 

  33. LeBlanc DM, Barousse MM, Fidel PL Jr. Role for dendritic cells in immunoregulation during experimental vaginal candidiasis. Infect Immun 2006;74(6):3213–21.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao X, Deak E, Soderberg K, Linehan M, Spezzano D, Zhu J, et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J Exp Med 2003;197(2):153–62.

    Article  PubMed  CAS  Google Scholar 

  35. Komi J, Lassila O. Nonsteroidal anti-estrogens inhibit the functional differentiation of human monocyte-derived dendritic cells. Blood 2000;95(9):2875–82.

    PubMed  CAS  Google Scholar 

  36. Nalbandian G, Paharkova-Vatchkova V, Mao A, Nale S, Kovats S. The selective estrogen receptor modulators, tamoxifen and raloxifene, impair dendritic cell differentiation and activation. J Immunol 2005;175(4):2666–75.

    PubMed  CAS  Google Scholar 

  37. Paharkova-Vatchkova V, Maldonado R, Kovats S. Estrogen preferentially promotes the differentiation of CD11c+ CD11b(intermediate) dendritic cells from bone marrow precursors. J Immunol 2004;172(3):1426–36.

    PubMed  CAS  Google Scholar 

  38. Bengtsson AK, Ryan EJ, Giordano D, Magaletti DM, Clark EA. 17Beta-estradiol (E2) modulates cytokine and chemokine expression in human monocyte-derived dendritic cells. Blood 2004;104(5):1404–10.

    Article  PubMed  CAS  Google Scholar 

  39. Moffett A, Loke C. Immunology of placentation in eutherian mammals. Nat Rev Immunol 2006;6(8):584–94.

    Article  PubMed  CAS  Google Scholar 

  40. King A, Wellings V, Gardner L, Loke YW. Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughout the menstrual cycle. Hum Immunol 1989;24(3):195–205.

    Article  PubMed  CAS  Google Scholar 

  41. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 2003;198(8):1201–12.

    Article  PubMed  CAS  Google Scholar 

  42. Henderson TA, Saunders PT, Moffett-King A, Groome NP, Critchley HO. Steroid receptor expression in uterine natural killer cells. J Clin Endocrinol Metab 2003;88(1):440–9.

    Article  PubMed  CAS  Google Scholar 

  43. Xie X, He H, Colonna M, Seya T, Takai T, Croy BA. Pathways participating in activation of mouse uterine natural killer cells during pregnancy. Biol Reprod 2005;73(3):510–8.

    Article  PubMed  CAS  Google Scholar 

  44. Leonard S, Murrant C, Tayade C, van den Heuvel M, Watering R, Croy BA. Mechanisms regulating immune cell contributions to spiral artery modification – facts and hypotheses – a review. Placenta 2006;27(Suppl A):S40–6.

    Article  PubMed  CAS  Google Scholar 

  45. Robb L, Dimitriadis E, Li R, Salamonsen LA. Leukemia inhibitory factor and interleukin-11: cytokines with key roles in implantation. J Reprod Immunol 2002;57(1–2):129–41.

    Article  PubMed  CAS  Google Scholar 

  46. Gubbay O, Critchley HO, Bowen JM, King A, Jabbour HN. Prolactin induces ERK phosphorylation in epithelial and CD56(+) natural killer cells of the human endometrium. J Clin Endocrinol Metab 2002;87(5):2329–35.

    Article  PubMed  CAS  Google Scholar 

  47. Tvinnereim AR, Hamilton SE, Harty JT. Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J Immunol 2004;173(3):1994–2002.

    PubMed  CAS  Google Scholar 

  48. Sonoda Y, Mukaida N, Wang JB, Shimada-Hiratsuka M, Naito M, Kasahara T, et al. Physiologic regulation of postovulatory neutrophil migration into vagina in mice by a C-X-C chemokine(s). J Immunol 1998;160(12):6159–65.

    PubMed  CAS  Google Scholar 

  49. Kelly RW, Illingworth P, Baldie G, Leask R, Brouwer S, Calder AA. Progesterone control of interleukin-8 production in endometrium and chorio-decidual cells underlines the role of the neutrophil in menstruation and parturition. Hum Reprod 1994;9(2):253–8.

    PubMed  CAS  Google Scholar 

  50. O’Leary S, Robertson SA, Armstrong DT. The influence of seminal plasma on ovarian function in pigs – a novel inflammatory mechanism? J Reprod Immunol 2002;57(1–2):225–38.

    Article  PubMed  CAS  Google Scholar 

  51. Brannstrom M, Pascoe V, Norman RJ, McClure N. Localization of leukocyte subsets in the follicle wall and in the corpus luteum throughout the human menstrual cycle. Fertil Steril 1994;61(3):488–95.

    PubMed  CAS  Google Scholar 

  52. Brannstrom M, Bonello N, Norman RJ, Robertson SA. Reduction of ovulation rate in the rat by administration of a neutrophil-depleting monoclonal antibody. J Reprod Immunol 1995;29(3):265–70.

    Article  PubMed  CAS  Google Scholar 

  53. Vassiliadou N, Bulmer JN. Quantitative analysis of T lymphocyte subsets in pregnant and nonpregnant human endometrium. Biol Reprod 1996;55(5):1017–22.

    Article  PubMed  CAS  Google Scholar 

  54. Arck PC, Merali F, Chaouat G, Clark DA. Inhibition of immunoprotective CD8+ T cells as a basis for stress-triggered substance P-mediated abortion in mice. Cell Immunol 1996;171(2):226–30.

    Article  PubMed  CAS  Google Scholar 

  55. Yeaman GR, Guyre PM, Fanger MW, Collins JE, White HD, Rathbun W, et al. Unique CD8+ T cell-rich lymphoid aggregates in human uterine endometrium. J Leukoc Biol 1997;61(4):427–35.

    PubMed  CAS  Google Scholar 

  56. Gillgrass AE, Tang VA, Towarnicki KM, Rosenthal KL, Kaushic C. Protection against genital herpes infection in mice immunized under different hormonal conditions correlates with induction of vagina-associated lymphoid tissue. J Virol 2005;79(5):3117–26.

    Article  PubMed  CAS  Google Scholar 

  57. Blois SM, Joachim R, Kandil J, Margni R, Tometten M, Klapp BF, et al. Depletion of CD8+ cells abolishes the pregnancy protective effect of progesterone substitution with dydrogesterone in mice by altering the Th1/Th2 cytokine profile. J Immunol 2004;172(10):5893–9.

    PubMed  CAS  Google Scholar 

  58. Mincheva-Nilsson L, Nagaeva O, Chen T, Stendahl U, Antsiferova J, Mogren I, et al. Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival. J Immunol 2006;176(6):3585–92.

    PubMed  CAS  Google Scholar 

  59. White HD, Crassi KM, Givan AL, Stern JE, Gonzalez JL, Memoli VA, et al. CD3+ CD8+ CTL activity within the human female reproductive tract: influence of stage of the menstrual cycle and menopause. J Immunol 1997;158(6):3017–27.

    PubMed  CAS  Google Scholar 

  60. Watson JG, Carroll J, Chaykin S. Reproduction in mice: the fate of spermatozoa not involved in fertilization. Gamete Res 1983;7:75–84.

    Google Scholar 

  61. Robertson SA, Mau VJ, Hudson SN, Tremellen KP. Cytokine-leukocyte networks and the establishment of pregnancy. Am J Reprod Immunol 1997;37(6):438–42.

    PubMed  CAS  Google Scholar 

  62. Wira CR, Rossoll RM. Antigen-presenting cells in the female reproductive tract: influence of sex hormones on antigen presentation in the vagina. Immunology 1995;84(4):505–8.

    PubMed  CAS  Google Scholar 

  63. Ginsburg KA, Wolf NA, Fidel PL. Potential effects of midcycle cervical mucus on mediators of immune reactivity. Fertil Steril 1997;67(1):46–50.

    Article  PubMed  CAS  Google Scholar 

  64. Johansson EL, Rudin A, Wassen L, Holmgren J. Distribution of lymphocytes and adhesion molecules in human cervix and vagina. Immunology 1999;96(2):272–7.

    Article  PubMed  CAS  Google Scholar 

  65. Marieb EN. Human anatomy & physiology, 5th edn. New York: Daryl Fox; 2001.

    Google Scholar 

  66. Loke YW, King A. Immunology of human placental implantation: clinical implications of our current understanding. Mol Med Today 1997;3(4):153–9.

    Article  PubMed  CAS  Google Scholar 

  67. Clark DA, Foerster K, Fung L, He W, Lee L, Mendicino M, et al. The fgl2 prothrombinase/fibroleukin gene is required for lipopolysaccharide-triggered abortions and for normal mouse reproduction. Mol Hum Reprod 2004;10(2):99–108.

    Article  PubMed  CAS  Google Scholar 

  68. Chaouat G. Synergy of lipopolysaccharide and inflammatory cytokines in murine pregnancy: alloimmunization prevents abortion but does not affect the induction of preterm delivery. Cell Immunol 1994;157(2):328–40.

    Article  PubMed  CAS  Google Scholar 

  69. Poole JA, Claman HN. Immunology of pregnancy. Implications for the mother. Clin Rev Allergy Immunol 2004;26(3):161–70.

    Article  PubMed  Google Scholar 

  70. Bell SC, Billington WD. Major anti-paternal alloantibody induced by murine pregnancy is non-complement-fixing IgG1. Nature 1980;288(5789):387–8.

    Article  PubMed  CAS  Google Scholar 

  71. Saito S. Cytokine network at the feto–maternal interface. J Reprod Immunol 2000;47(2):87–103.

    Article  PubMed  CAS  Google Scholar 

  72. Clark DA, Arck PC, Chaouat G. Why did your mother reject you? Immunogenetic determinants of the response to environmental selective pressure expressed at the uterine level. Am J Reprod Immunol 1999;41(1):5–22.

    PubMed  CAS  Google Scholar 

  73. Mellor AL, Munn DH. Extinguishing maternal immune responses during pregnancy: implications for immunosuppression. Semin Immunol 2001;13(4):213–8.

    Article  PubMed  CAS  Google Scholar 

  74. Redline RW, Lu CY. Localization of fetal major histocompatibility complex antigens and maternal leukocytes in murine placenta. Implications for maternal–fetal immunological relationship. Lab Invest 1989;61(1):27–36.

    PubMed  CAS  Google Scholar 

  75. Hunt JS, Petroff MG, McIntire RH, Ober C. HLA-G and immune tolerance in pregnancy. FASEB J 2005;19(7):681–93.

    Article  PubMed  CAS  Google Scholar 

  76. Nelson JL. Pregnancy and microchimerism in autoimmune disease: protector or insurgent? Arthritis Rheum 2002;46(2):291–7.

    Article  PubMed  Google Scholar 

  77. Chaouat G, Clark DA. FAS/FAS ligand interaction at the placental interface is not required for the success of allogeneic pregnancy in anti-paternal MHC preimmunized mice. Am J Reprod Immunol 2001;45(2):108–15.

    Article  PubMed  CAS  Google Scholar 

  78. Chatterjee-Hasrouni S, Lala PK. Localization of paternal H-2K antigens on murine trophoblast cells in vivo. J Exp Med 1982;155(6):1679–89.

    Article  PubMed  CAS  Google Scholar 

  79. Jaffe L, Robertson EJ, Bikoff EK. Distinct patterns of expression of MHC class I and beta 2-microglobulin transcripts at early stages of mouse development. J Immunol 1991;147(8):2740–9.

    PubMed  CAS  Google Scholar 

  80. Chen HL, Kamath R, Pace JL, Russell SW, Hunt JS. Expression of the interferon-gamma receptor gene in mouse placentas is related to stage of gestation and is restricted to specific subpopulations of trophoblast cells. Placenta 1994;15(2):109–21.

    Article  PubMed  CAS  Google Scholar 

  81. Dealtry GB, O’Farrell MK, Fernandez N. The Th2 cytokine environment of the placenta. Int Arch Allergy Immunol 2000;123(2):107–19.

    Article  PubMed  CAS  Google Scholar 

  82. Piccinni MP. T cells in normal pregnancy and recurrent pregnancy loss. Reprod Biomed Online 2006;13(6):840–4.

    Article  PubMed  CAS  Google Scholar 

  83. Arck PC. Stress and pregnancy loss: role of immune mediators, hormones and neurotransmitters. Am J Reprod Immunol 2001;46(2):117–23.

    Article  PubMed  CAS  Google Scholar 

  84. Szekeres-Bartho J, Barakonyi A, Par G, Polgar B, Palkovics T, Szereday L. Progesterone as an immunomodulatory molecule. Int Immunopharmacol 2001;1(6):1037–48.

    Article  PubMed  CAS  Google Scholar 

  85. Pepe GJ, Albrecht ED. Actions of placental and fetal adrenal steroid hormones in primate pregnancy. Endocr Rev 1995;16(5):608–48.

    Article  PubMed  CAS  Google Scholar 

  86. Shirshev SV, Kuklina EM, Yarilin AA. Role of reproductive hormones in control of apoptosis of T-lymphocytes. Biochemistry (Mosc) 2003;68(4):470–5.

    Article  CAS  Google Scholar 

  87. Majewski AC, Hansen PJ. Progesterone inhibits rejection of xenogeneic transplants in the sheep uterus. Horm Res 2002;58(3):128–35.

    Article  PubMed  CAS  Google Scholar 

  88. Rijhsinghani AG, Thompson K, Bhatia SK, Waldschmidt TJ. Estrogen blocks early T cell development in the thymus. Am J Reprod Immunol 1996;36(5):269–77.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew M. Seavey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seavey, M.M., Mosmann, T.R. Immunoregulation of fetal and anti-paternal immune responses. Immunol Res 40, 97–113 (2008). https://doi.org/10.1007/s12026-007-8005-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-007-8005-x

Keywords

Navigation