Skip to main content

Advertisement

Log in

Connectivity-Based Brain Parcellation

A Connectivity-Based Atlas for Schizophrenia Research

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Defining brain structures of interest is an important preliminary step in brain-connectivity analysis. Researchers interested in connectivity patterns among brain structures typically employ manually delineated volumes of interest, or regions in a readily available atlas, to limit the scope of connectivity analysis to relevant regions. However, most structural brain atlases, and manually delineated volumes of interest, do not take voxel-wise connectivity patterns into consideration, and therefore may not be ideal for anatomic connectivity analysis. We herein propose a method to parcellate the brain into regions of interest based on connectivity. We formulate connectivity-based parcellation as a graph-cut problem, which we solve approximately using a novel multi-class Hopfield network algorithm. We demonstrate the application of this approach using diffusion tensor imaging data from an ongoing study of schizophrenia. Compared to a standard anatomic atlas, the connectivity-based atlas supports better classification performance when distinguishing schizophrenic from normal subjects. Comparing connectivity patterns averaged across the normal and schizophrenic subjects, we note significant systematic differences between the two atlases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aarts, E., & Korst, J. (1988). Simulated annealing and boltzmann machines: a stochastic approach to combinatorial optimization and neural computing.

  • Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N., Habel, U., Schneider, F., & Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anatomy and Embryology, 210(5–6), 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Beckmann, C.F., DeLuca, M., Devlin, J.T., & Smith, S.M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457), 1001–1013.

    Article  Google Scholar 

  • Behrens, T., Berg, H.J., Jbabdi, S., Rushworth, M., & Woolrich, M. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 34(1), 144–155.

    Article  PubMed  CAS  Google Scholar 

  • Belmonte, M.K., Allen, G., Beckel-Mitchener, A., Boulanger, L.M., Carper, R.A., & Webb, S.J. (2004). Autism and abnormal development of brain connectivity. The Journal of Neuroscience, 24(42), 9228–9231.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, C.R., Pernet, C.R., Gorgolewski, K.J., Storkey, A.J., & Bastin, M.E. (2014). Test–retest reliability of structural brain networks from diffusion mri. Neuroimage, 86, 231–243.

    Article  PubMed  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.

    Article  PubMed  CAS  Google Scholar 

  • Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336–349.

    PubMed  CAS  Google Scholar 

  • Cloutman, L.L., & Ralph, M.A.L. (2012). Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography. Frontiers in Neuroanatomy, 6.

  • Collins, D.L., Holmes, C.J., Peters, T.M., & Evans, A.C. (1995). Automatic 3-d model-based neuroanatomical segmentation. Human Brain Mapping, 3(3), 190–208.

    Article  Google Scholar 

  • Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., & Thiran, J.P. (2007). Mapping human whole-brain structural networks with diffusion mri. PloS One, 2(7), e597.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayasaka, S., & Laurienti, P.J. (2010). Comparison of characteristics between region-and voxel-based network analyses in resting-state fmri data. Neuroimage, 50(2), 499– 508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellinger, E. (1909). Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen. Journal für die reine und angewandte Mathematik, 136, 210–271.

    Google Scholar 

  • van den Heuvel, M.P., Mandl, R.C., Kahn, R.S., Pol, H., & Hilleke, E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141.

    Article  PubMed  Google Scholar 

  • Honea, R., Crow, T.J., Passingham, D., & Mackay, C.E. (2005). Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. American Journal of Psychiatry, 162(12), 2233–2245.

    Article  PubMed  Google Scholar 

  • Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554– 2558.

    Article  CAS  Google Scholar 

  • Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., & Smith, S.M. (2012). Fsl Neuroimage, 62(2), 782–790.

    Article  PubMed  Google Scholar 

  • Karp, R.M. (1972). Reducibility among combinatorial problems. Springer.

  • Kötter, R., Hilgetag, C.C., & Stephan, K.E. (2001). Connectional characteristics of areas in walker’s map of primate prefrontal cortex. Neurocomputing, 38, 741–746.

    Article  Google Scholar 

  • Levine, E., & Domany, E. (2001). Resampling method for unsupervised estimation of cluster validity. Neural Computation, 13(11), 2573–2593.

    Article  PubMed  CAS  Google Scholar 

  • Mori, S., Wakana, S., Van Zijl, P.C., & Nagae-Poetscher, L. (2005). Mri atlas of human white matter.

  • Nanetti, L., Cerliani, L., Gazzola, V., Renken, R., & Keysers, C. (2009). Group analyses of connectivity-based cortical parcellation using repeated < i > k-means clustering. Neuroimage, 47(4), 1666–1677.

    Article  PubMed  Google Scholar 

  • Passingham, R.E., Stephan, K.E., & Kötter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3(8), 606–616.

    Article  PubMed  CAS  Google Scholar 

  • Roca, P., Rivière, D., Guevara, P., Poupon, C., & Mangin, J.F. (2009). Tractography-based parcellation of the cortex using a spatially-informed dimension reduction of the connectivity matrix. In Medical image computing and computer-assisted intervention–MICCAI 2009 (pp. 935–942). Springer.

  • Roca, P., Tucholka, A., Rivière, D., Guevara, P., Poupon, C., & Mangin, J.F. (2010). Inter-subject connectivity-based parcellation of a patch of cerebral cortex. In Medical image computing and computer-assisted intervention–MICCAI 2010 (pp. 347–354). Springer.

  • Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M.D. (2008). Network analysis of intrinsic functional brain connectivity in alzheimer’s disease. PLoS Computational Biology, 4(6), e1000,100.

    Article  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage, 15(1), 273–289.

    Article  PubMed  CAS  Google Scholar 

  • Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H., & Chklovskii, D.B. (2011). Structural properties of the caenorhabditis elegans neuronal network. PLoS Computational Biology, 7(2), e1001,066.

    Article  CAS  Google Scholar 

  • Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.

    Article  Google Scholar 

  • Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yücel, M., Pantelis, C., & Bullmore, E.T. (2010). Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage, 50(3), 970–983.

    Article  PubMed  Google Scholar 

  • Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fmri data analysis. Neuroimage, 22(1), 394–400.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01MH085646, P50MH103222, and R01DA027680 to LEH) and by the University of Maryland’s Center for Health Informatics and Bioimaging, and the State of Maryland MPower initiative (to EHH and JJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Chen, R., JaJa, J. et al. Connectivity-Based Brain Parcellation. Neuroinform 14, 83–97 (2016). https://doi.org/10.1007/s12021-015-9280-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-015-9280-7

Keywords

Navigation