Skip to main content
Log in

Maternal high-calorie diet is associated with altered hepatic microRNA expression and impaired metabolic health in offspring at weaning age

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

High-calorie diet (HCD) feeding in mice predisposes offspring for impaired glucose homeostasis and obesity. However, the mechanisms underlying these detrimental effects of maternal nutrition, especially during early life of offspring, are incompletely understood. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate target gene expression. Here we hypothesized that impaired metabolic health in offspring from HCD-fed dams at weaning is associated with dysregulated expression of hepatic miRNAs. Dams were fed a chow diet (CD; 11.4 % kcal fat, 62.8 % from carbohydrate, 25.8 % from protein) or HCD (58 % kcal from fat; 25.6 % from carbohydrate, 16.4 % from protein) during gestation and lactation, and metabolic health was assessed in male offspring at weaning. Hepatic levels of miRNAs and target genes were investigated in offspring from CD- or HCD-fed dams using gene and protein expression. Maternal HCD feeding impaired metabolic health in offspring compared to offspring from CD-fed dams. Microarray analysis indicated that expressions of miR-615-5p, miR-3079-5p, miR-124*, and miR-101b* were downregulated, whereas miR-143* was upregulated, in livers from offspring from HCD-fed dams. Our functional enrichment analysis indicated that the target genes of these differentially expressed miRNAs, including tumor necrosis factor-α (TNF-α) and mitogen-activated protein kinase 1 (MAPK1), were mapped to inflammatory pathways. Finally, we verified that both mRNA and protein levels of the pro-inflammatory modulators TNF-α and MAPK1 were significantly increased in livers of offspring from HCD-fed dams at weaning. Maternal HCD feeding predisposes offspring to a higher body weight and impaired glucose metabolism at weaning. To the best of knowledge, our study is the first to show that maternal HCD consumption impairs metabolic health, modulates hepatic miRNA expression, and increases markers of hepatic inflammation in offspring as early as at weaning age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Slatkin, Epigenetic inheritance and the missing heritability problem. Genetics 182(3), 845–850 (2009). doi:10.1534/genetics.109.102798

    Article  PubMed  PubMed Central  Google Scholar 

  2. G.C. Curhan, W.C. Willett, E.B. Rimm, D. Spiegelman, A.L. Ascherio, M.J. Stampfer, Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation 94(12), 3246–3250 (1996)

    Article  CAS  PubMed  Google Scholar 

  3. D. Gniuli, A. Calcagno, M.E. Caristo, A. Mancuso, V. Macchi, G. Mingrone, R. Vettor, Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny. J. Lipid Res. 49(9), 1936–1945 (2008). doi:10.1194/jlr.M800033-JLR200

    Article  CAS  PubMed  Google Scholar 

  4. H.S. Lee, Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 7(11), 9492–9507 (2015). doi:10.3390/nu7115467

    Article  PubMed  PubMed Central  Google Scholar 

  5. O. Dumortier, C. Hinault, N. Gautier, S. Patouraux, V. Casamento, E. Van Obberghen, Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes (2014). doi:10.2337/db13-1431

    PubMed  Google Scholar 

  6. S. Lie, J.L. Morrison, O. Williams-Wyss, C.M. Suter, D.T. Humphreys, S.E. Ozanne, S. Zhang, S.M. Maclaughlin, D.O. Kleemann, S.K. Walker, C.T. Roberts, I.C. McMillen, Periconceptional undernutrition programs changes in insulin-signaling molecules and microRNAs in skeletal muscle in singleton and twin fetal sheep. Biol. Reprod. 90(1), 5 (2014). doi:10.1095/biolreprod.113.109751

    Article  PubMed  Google Scholar 

  7. S. Lie, J.L. Morrison, O. Williams-Wyss, C.M. Suter, D.T. Humphreys, S.E. Ozanne, S. Zhang, S.M. MacLaughlin, D.O. Kleemann, S.K. Walker, C.T. Roberts, I.C. McMillen, Impact of embryo number and maternal undernutrition around the time of conception on insulin signaling and gluconeogenic factors and microRNAs in the liver of fetal sheep. Am. j. Physiol. Endocrinol. Metab. 306(9), E1013–E1024 (2014). doi:10.1152/ajpendo.00553.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M.A. Reddy, R. Natarajan, Epigenetic mechanisms in diabetic vascular complications. Cardiovasc. Res. 90(3), 421–429 (2011). doi:10.1093/cvr/cvr024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O. Aguilera, A.F. Fernandez, A. Munoz, M.F. Fraga, Epigenetics and environment: a complex relationship. J. Appl. Physiol. 109(1), 243–251 (2010). doi:10.1152/japplphysiol.00068.2010

    Article  CAS  PubMed  Google Scholar 

  10. J.A. Deiuliis, MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int. J. Obes. 40(1), 88–101 (2005). doi:10.1038/ijo.2015.170

    Article  Google Scholar 

  11. V. Rottiers, A.M. Naar, MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 13(4), 239–250 (2012). doi:10.1038/nrm3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S.D. Jordan, M. Kruger, D.M. Willmes, N. Redemann, F.T. Wunderlich, H.S. Bronneke, C. Merkwirth, H. Kashkar, V.M. Olkkonen, T. Bottger, T. Braun, J. Seibler, J.C. Bruning, Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 13(4), 434–446 (2011). doi:10.1038/ncb2211

    Article  CAS  PubMed  Google Scholar 

  13. J.W. Kornfeld, C. Baitzel, A.C. Konner, H.T. Nicholls, M.C. Vogt, K. Herrmanns, L. Scheja, C. Haumaitre, A.M. Wolf, U. Knippschild, J. Seibler, S. Cereghini, J. Heeren, M. Stoffel, J.C. Bruning, Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494(7435), 111–115 (2013). doi:10.1038/nature11793

    Article  CAS  PubMed  Google Scholar 

  14. T. Pentinat, M. Ramon-Krauel, J. Cebria, R. Diaz, J.C. Jimenez-Chillaron, Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 151(12), 5617–5623 (2010). doi:10.1210/en.2010-0684

    Article  CAS  PubMed  Google Scholar 

  15. L. Williams, Y. Seki, P.M. Vuguin, M.J. Charron, Animal models of in utero exposure to a high fat diet: a review. Biochim. Biophys. Acta 1842(3), 507–519 (2014). doi:10.1016/j.bbadis.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  16. M.E. Symonds, S.P. Sebert, M.A. Hyatt, H. Budge, Nutritional programming of the metabolic syndrome. Nat. Rev. Endocrinol. 5(11), 604–610 (2009). doi:10.1038/nrendo.2009.195

    Article  CAS  PubMed  Google Scholar 

  17. P.M. Miotto, L.M. Castelli, F. Amoye, P.J. LeBlanc, S.J. Peters, B.D. Roy, W.E. Ward, Maternal high fat feeding does not have long-lasting effects on body composition and bone health in female and male Wistar rat offspring at young adulthood. Molecules 18(12), 15094–15109 (2013). doi:10.3390/molecules181215094

    Article  CAS  PubMed  Google Scholar 

  18. J.A. McKay, L. Xie, C. Manus, S.A. Langie, R.J. Maxwell, D. Ford, J.C. Mathers, Metabolic effects of a high-fat diet post-weaning after low maternal dietary folate during pregnancy and lactation. Mol. Nutr. Food Res. (2014). doi:10.1002/mnfr.201300615

    PubMed  Google Scholar 

  19. K.D. Bruce, F.R. Cagampang, M. Argenton, J. Zhang, P.L. Ethirajan, G.C. Burdge, A.C. Bateman, G.F. Clough, L. Poston, M.A. Hanson, J.M. McConnell, C.D. Byrne, Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 50(6), 1796–1808 (2009). doi:10.1002/hep.23205

    Article  CAS  PubMed  Google Scholar 

  20. H. Jiang, W. Wu, M. Zhang, J. Li, Y. Peng, T.T. Miao, H. Zhu, G. Xu, Aberrant upregulation of miR-21 in placental tissues of macrosomia. J. Perinatol. 34(9), 658–663 (2014). doi:10.1038/jp.2014.58

    Article  CAS  PubMed  Google Scholar 

  21. J. Zhang, F. Zhang, X. Didelot, K.D. Bruce, F.R. Cagampang, M. Vatish, M. Hanson, H. Lehnert, A. Ceriello, C.D. Byrne, Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genom. 10, 478 (2009). doi:10.1186/1471-2164-10-478

    Article  Google Scholar 

  22. R.O. Benatti, A.M. Melo, F.O. Borges, L.M. Ignacio-Souza, L.A. Simino, M. Milanski, L.A. Velloso, M.A. Torsoni, A.S. Torsoni, Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring. Br. J. Nutr. 111(12), 2112–2122 (2014). doi:10.1017/s0007114514000579

    Article  CAS  PubMed  Google Scholar 

  23. J. Zheng, X. Xiao, Q. Zhang, M. Yu, J. Xu, Z. Wang, C. Qi, T. Wang, Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring. Metab. Brain Dis. 30(5), 1129–1137 (2015). doi:10.1007/s11011-015-9678-9

    Article  CAS  PubMed  Google Scholar 

  24. M.S. Winzell, B. Ahren, The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3), S215–S219 (2004)

    Article  PubMed  Google Scholar 

  25. Y. Luo, C. Zhang, F. Tang, J. Zhao, C. Shen, C. Wang, P. Yu, M. Wang, Y. Li, J.I. Di, R. Chen, G. Rili, Bioinformatics identification of potentially involved microRNAs in Tibetan with gastric cancer based on microRNA profiling. Cancer Cell Int. 15, 115 (2015). doi:10.1186/s12935-015-0266-1

    Article  PubMed  PubMed Central  Google Scholar 

  26. H. Dweep, N. Gretz, miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat. Methods 12(8), 697 (2015). doi:10.1038/nmeth.3485

    Article  CAS  PubMed  Google Scholar 

  27. Q. Zhang, X. Xiao, M. Li, W. Li, M. Yu, H. Zhang, Z. Wang, H. Xiang, Acarbose reduces blood glucose by activating miR-10a-5p and miR-664 in diabetic rats. PLoS One 8(11), e79697 (2013). doi:10.1371/journal.pone.0079697

    Article  PubMed  PubMed Central  Google Scholar 

  28. G. Verdile, K.N. Keane, V.F. Cruzat, S. Medic, M. Sabale, J. Rowles, N. Wijesekara, R.N. Martins, P.E. Fraser, P. Newsholme, Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediat. Inflamm. 2015, 105828 (2015). doi:10.1155/2015/105828

    Article  Google Scholar 

  29. H. Chen, Cellular inflammatory responses: novel insights for obesity and insulin resistance. Pharmacol. Res. 53(6), 469–477 (2006). doi:10.1016/j.phrs.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  30. V.T. Samuel, G.I. Shulman, The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Investig. 126(1), 12–22 (2016). doi:10.1172/jci77812

    Article  PubMed  Google Scholar 

  31. L. Ferrero-Miliani, O.H. Nielsen, P.S. Andersen, S.E. Girardin, Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol. 147(2), 227–235 (2007). doi:10.1111/j.1365-2249.2006.03261.x

    CAS  PubMed  PubMed Central  Google Scholar 

  32. J.L. Saben, E.S. Bales, M.R. Jackman, D. Orlicky, P.S. MacLean, J.L. McManaman, Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis. PLoS ONE 9(5), e98066 (2014). doi:10.1371/journal.pone.0098066

    Article  PubMed  PubMed Central  Google Scholar 

  33. C.J. Bautista, S. Montano, V. Ramirez, A. Morales, P.W. Nathanielsz, N.A. Bobadilla, E. Zambrano, Changes in milk composition in obese rats consuming a high-fat diet. Br. J. Nutr. 115(3), 538–546 (2016). doi:10.1017/s0007114515004547

    Article  CAS  PubMed  Google Scholar 

  34. M.C. Vogt, L. Paeger, S. Hess, S.M. Steculorum, M. Awazawa, B. Hampel, S. Neupert, H.T. Nicholls, J. Mauer, A.C. Hausen, R. Predel, P. Kloppenburg, T.L. Horvath, J.C. Bruning, Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 156(3), 495–509 (2014). doi:10.1016/j.cell.2014.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. N.G. Ashino, K.N. Saito, F.D. Souza, F.S. Nakutz, E.A. Roman, L.A. Velloso, A.S. Torsoni, M.A. Torsoni, Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J. Nutr. Biochem. 23(4), 341–348 (2012). doi:10.1016/j.jnutbio.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  36. M.G. Pruis, A. Lendvai, V.W. Bloks, M.V. Zwier, J.F. Baller, A. de Bruin, A.K. Groen, T. Plosch, Maternal western diet primes non-alcoholic fatty liver disease in adult mouse offspring. Acta Physiologica 210(1), 215–227 (2014). doi:10.1111/apha.12197

    Article  CAS  PubMed  Google Scholar 

  37. L. Backdahl, A. Bushell, S. Beck, Inflammatory signalling as mediator of epigenetic modulation in tissue-specific chronic inflammation. Int. J. Biochem. Cell Biol. 41(1), 176–184 (2009). doi:10.1016/j.biocel.2008.08.023

    Article  CAS  PubMed  Google Scholar 

  38. D. Zhou, Y.X. Pan, Pathophysiological basis for compromised health beyond generations: role of maternal high-fat diet and low-grade chronic inflammation. J. Nutr. Biochem. 26(1), 1–8 (2015). doi:10.1016/j.jnutbio.2014.06.011

    Article  PubMed  Google Scholar 

  39. J.M. Kyriakis, J. Avruch, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81(2), 807–869 (2001)

    CAS  PubMed  Google Scholar 

  40. J.L. Marques-Rocha, M. Samblas, F.I. Milagro, J. Bressan, J.A. Martinez, A. Marti, Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 29(9), 3595–3611 (2015). doi:10.1096/fj.14-260323

    Article  CAS  PubMed  Google Scholar 

  41. N. Zhang, J. Lei, H. Lei, X. Ruan, Q. Liu, Y. Chen, W. Huang, MicroRNA-101 overexpression by IL-6 and TNF-alpha inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp. Cell Res. 336(1), 33–42 (2015). doi:10.1016/j.yexcr.2015.05.023

    Article  CAS  PubMed  Google Scholar 

  42. E. Tsitsiou, M.A. Lindsay, microRNAs and the immune response. Curr. Opin. Pharmacol. 9(4), 514–520 (2009). doi:10.1016/j.coph.2009.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. E.M. Munch, R.A. Harris, M. Mohammad, A.L. Benham, S.M. Pejerrey, L. Showalter, M. Hu, C.D. Shope, P.D. Maningat, P.H. Gunaratne, M. Haymond, K. Aagaard, Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS One 8(2), e50564 (2013). doi:10.1371/journal.pone.0050564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. P. Casas-Agustench, F.S. Fernandes, M.G.T. do Carmo, F. Visioli, E. Herrera, A. Davalos, Consumption of distinct dietary lipids during early pregnancy differentially modulates the expression of microRNAs in mothers and offspring. PLoS One 10(2), e0117858 (2015). doi:10.1371/journal.pone.0117858

    Article  PubMed  PubMed Central  Google Scholar 

  45. P. Casas-Agustench, E. Iglesias-Gutierrez, A. Davalos, Mother’s nutritional miRNA legacy: nutrition during pregnancy and its possible implications to develop cardiometabolic disease in later life. Pharmacol. Res. 100, 322–334 (2015). doi:10.1016/j.phrs.2015.08.017

    Article  CAS  PubMed  Google Scholar 

  46. I.D. Kilic, Y. Dodurga, B. Uludag, Y.I. Alihanoglu, B.S. Yildiz, Y. Enli, M. Secme, H.E. Bostanci, MicroRNA -143 and -223 in obesity. Gene 560(2), 140–142 (2015). doi:10.1016/j.gene.2015.01.048

    Article  CAS  PubMed  Google Scholar 

  47. Y. Teng, R. Zhang, C. Liu, L. Zhou, H. Wang, W. Zhuang, Y. Huang, Z. Hong, miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Ralpha1. Biochem. Biophys. Res. Commun. 457(1), 58–64 (2015). doi:10.1016/j.bbrc.2014.12.058

    Article  CAS  PubMed  Google Scholar 

  48. D. Li, Z. Lu, J. Jia, Z. Zheng, S. Lin, MiR-124 is related to podocytic adhesive capacity damage in STZ-induced uninephrectomized diabetic rats. Kidney Blood Press. Res. 37(4–5), 422–431 (2013). doi:10.1159/000355721

    Article  CAS  PubMed  Google Scholar 

  49. J.H. Wu, Y. Gao, A.J. Ren, S.H. Zhao, M. Zhong, Y.J. Peng, W. Shen, M. Jing, L. Liu, Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Res. 47(4), 195–201 (2012). doi:10.1159/000331992

    Article  CAS  PubMed  Google Scholar 

  50. Y. Miyamoto, A.S. Mauer, S. Kumar, J.L. Mott, H. Malhi, Mmu-miR-615-3p regulates lipoapoptosis by inhibiting C/EBP homologous protein. PLoS One 9(10), e109637 (2014). doi:10.1371/journal.pone.0109637

    Article  PubMed  PubMed Central  Google Scholar 

  51. P. Siengdee, N. Trakooljul, E. Murani, M. Schwerin, K. Wimmers, S. Ponsuksili, MicroRNAs regulate cellular ATP levels by targeting mitochondrial energy metabolism genes during C2C12 myoblast differentiation. PLoS One 10(5), e0127850 (2015). doi:10.1371/journal.pone.0127850

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No. 81570715 and No. 81170736) and the National Natural Science Foundation for Young Scholars of China (No. 81300649), the National Key Program of Clinical Science and Peking Union Medical College Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xiao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Zhang, Q., Mul, J.D. et al. Maternal high-calorie diet is associated with altered hepatic microRNA expression and impaired metabolic health in offspring at weaning age. Endocrine 54, 70–80 (2016). https://doi.org/10.1007/s12020-016-0959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0959-9

Keywords

Navigation