Skip to main content
Log in

The Immunophysiology and Apoptosis of Biliary Epithelial Cells: Primary Biliary Cirrhosis and Primary Sclerosing Cholangitis

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Biliary epithelial cells (BECs) provide the first line of defense against lumenal microbes in the biliary system. BECs express a variety of pathogen recognition receptors and can activate several intracellular signaling cascades to initiate antimicrobial defenses, including production of several anti-microbial peptides, cytokines, chemokines, and adhesion molecules. BECs also secrete immunoglobulin A and interact with other cells through expression and release of adhesion molecules and immune mediators. Recently, several reports suggest a correlation between apoptosis and autoimmunity through ineffective clearance of self-antigens. Primary biliary cirrhosis (PBC) is a slowly progressive, autoimmune cholestatic liver disease characterized by highly specific antimitochondrial antibodies (AMAs) and the specific immune-mediated destruction of BECs. We have demonstrated that the AMA self-antigen, namely the E2 subunit of the pyruvate dehydrogenase complex, is detectable in its antigenically reactive form within apoptotic blebs from human intrahepatic biliary epithelial cells and activates innate immune responses. Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammation and the presence of concentric fibrosis of intrahepatic and/or extrahepatic bile ducts, eventually leading to cirrhosis. However, apoptosis does not appear to play a central role in PSC. Despite both diseases involving immune-mediated injury to bile ducts, apoptosis occurs more commonly overall in PBC where it likely plays a unique role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMAs:

Antimitochondrial antibodies

ANA:

Anti-nuclear antibody

BCOADC-E2:

The E2 subunit of the branched chain 2-oxo acid dehydrogenase complex

BECs:

Biliary epithelial cells

BrEPCs:

Human bronchial epithelial cells

CX3CR1:

CX3C chemokine receptor 1

DC:

Dendritic cells

DECR1:

2,4-Dienoyl coenzyme A reductase 1

DR:

Death receptor

FasL:

Fas ligand

gp210:

Glycoprotein 210 kD

hBD:

Human β-defensin

HiBECs:

Human intrahepatic biliary epithelial cells

ICAM-1:

Intercellular adhesion molecule 1

IFN-β1:

Interferon β1

IgA:

Immunoglobulin A

IL-12A:

Interleukin-12A

IL-12RB2:

Interleukin-12 receptor beta2 subunit

IRAK-1:

IL-1 receptor-associated kinase

IRAK-M:

Interleukin-1 receptor-associated kinase M

IRF-3:

Interferon-regulatory factor-3

LFA-1:

Lymphocyte function-associated antigen-1

LFA-3:

Lymphocyte function-associated antigen 3

LPS:

Lipopolysaccharide

MAdCAM1:

Mucosal addressin cell adhesion molecule-1

MaEPCs:

Human mammary epithelial cells

MAPK:

Mitogen-activated protein kinases

MCP-1:

Monocyte chemotactic protein-1

MDA-5:

Melanoma differentiation associated gene 5

MPT:

Mitochondrial membrane permeability transition

MxA:

Myxovirus resistance protein A

MyD88:

Myeloid differentiation factor 88

(NF)–kB:

Nuclear factor

OGDC-E2:

The E2 subunit of the oxo-glutarate dehydrogenase complex

PAMPs:

Pathogen-associated molecular patterns

pANCA:

Perinuclear anti-neutrophil cytoplasmic antibody

PBC:

Primary biliary cirrhosis

PDC-E2:

The E2 subunit of the pyruvate dehydrogenase complex

poly I:C:

Polyinosinic–polycytidylic acid

PSC:

Primary sclerosing cholangitis

Rig-1:

Retinoic acid inducible gene-1

STAT4:

Signal transducer and activator of transcription 4

SSA/Ro:

Sjogren’s syndrome antigen A

TRAIL:

TNF-related apoptosis-inducing ligand

TLRs:

Toll-like receptors

TNF-R1:

TNF-α receptor-1

TUNEL:

TdT-mediated deoxyuridine triphosphate nick-end labeling

UCDA:

Ursodeoxycholic acid

UQCR2:

Ubiquiol cytochrome c reductase complex core protein II

References

  1. Harada K, Ohba K, Ozaki S et al (2004) Peptide antibiotic human beta-defensin-1 and -2 contribute to antimicrobial defense of the intrahepatic biliary tree. Hepatology 40:925–932

    PubMed  CAS  Google Scholar 

  2. Yokoyama T, Komori A, Nakamura M et al (2006) Human intrahepatic biliary epithelial cells function in innate immunity by producing IL-6 and IL-8 via the TLR4-NF-kappaB and -MAPK signaling pathways. Liver Int 26:467–476

    Article  PubMed  CAS  Google Scholar 

  3. Chen XM, O’Hara SP, Nelson JB et al (2005) Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J Immunol 175:7447–7456

    Google Scholar 

  4. Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975

    Article  PubMed  CAS  Google Scholar 

  5. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974

    Article  PubMed  CAS  Google Scholar 

  6. Lleo A, Invernizzi P, Selmi C et al (2007) Autophagy: highlighting a novel player in the autoimmunity scenario. J Autoimmun 29:61–68

    Article  PubMed  CAS  Google Scholar 

  7. Salunga TL, Cui ZG, Shimoda S et al (2007) Oxidative stress-induced apoptosis of bile duct cells in primary biliary cirrhosis. J Autoimmun 29:78–86

    Article  PubMed  CAS  Google Scholar 

  8. Allina J, Hu B, Sullivan DM et al (2006) T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis. J Autoimmun 27:232–241

    Google Scholar 

  9. Torok NJ (2007) Apoptotic cell death takes its toll. Hepatology 46:1323–1325

    Article  PubMed  CAS  Google Scholar 

  10. Schiller M, Bekeredjian-Ding I, Heyder P, Blank N, Ho AD, Lorenz HM (2008) Autoantigens are translocated into small apoptotic bodies during early stages of apoptosis. Cell Death Differ 15:183–191

    Article  PubMed  CAS  Google Scholar 

  11. Lucas M, Stuart LM, Savill J, Lacy-Hulbert A (2003) Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion. J Immunol 171:2610–2615

    PubMed  CAS  Google Scholar 

  12. Nagata S, Hanayama R, Kawane K (2010) Autoimmunity and the clearance of dead cells. Cell 140:619–630

    Article  PubMed  CAS  Google Scholar 

  13. Kaplan MM, Gershwin ME (2005) Primary biliary cirrhosis. N Engl J Med 353:1261–1273

    Article  PubMed  CAS  Google Scholar 

  14. Gershwin ME, Mackay IR, Sturgess A, Coppel RL (1987) Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol 138:3525–3531

    PubMed  CAS  Google Scholar 

  15. Lleo A, Selmi C, Invernizzi P et al (2009) Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology 49:871–879

    Article  PubMed  CAS  Google Scholar 

  16. Rong G, Zhong R, Lleo A et al (2011) Epithelial cell specificity and apotope recognition by serum autoantibodies in primary biliary cirrhosis. Hepatology 54:196–203

    Article  PubMed  CAS  Google Scholar 

  17. Lleo A, Bowlus CL, Yang GX et al (2010) Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 52:987–998

    Google Scholar 

  18. Tinmouth J, Lee M, Wanless IR, Tsui FW, Inman R, Heathcote EJ (2002) Apoptosis of biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. Liver 22:228–234

    Article  PubMed  Google Scholar 

  19. Anderson KV (2000) Toll signaling pathways in the innate immune response. Curr Opin Immunol 12:13–19

    Article  PubMed  CAS  Google Scholar 

  20. Kaisho T, Akira S (2002) Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 1589:1–13

    Article  PubMed  CAS  Google Scholar 

  21. Harada K, Isse K, Nakanuma Y (2006) Interferon gamma accelerates NF-kappaB activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction. J Clin Pathol 59:184–190

    Article  PubMed  CAS  Google Scholar 

  22. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  23. Wang AP, Migita K, Ito M et al (2005) Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis. J Autoimmun 25:85–91

    Article  PubMed  Google Scholar 

  24. Karrar A, Broome U, Sodergren T et al (2007) Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. Gastroenterology 132:1504–1514

    Article  PubMed  CAS  Google Scholar 

  25. Harada K, Ohira S, Isse K et al (2003) Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells. Lab Invest 83:1657–1667

    Article  PubMed  CAS  Google Scholar 

  26. Harada K, Sato Y, Itatsu K et al (2007) Innate immune response to double-stranded RNA in biliary epithelial cells is associated with the pathogenesis of biliary atresia. Hepatology 46:1146–1154

    Article  PubMed  CAS  Google Scholar 

  27. Chen XM, O’Hara SP, LaRusso NF (2008) The immunobiology of cholangiocytes. Immunol Cell Biol 86:497–505

    Article  PubMed  CAS  Google Scholar 

  28. Harada K, Isse K, Sato Y, Ozaki S, Nakanuma Y (2006) Endotoxin tolerance in human intrahepatic biliary epithelial cells is induced by upregulation of IRAK-M. Liver Int 26:935–942

    Article  PubMed  CAS  Google Scholar 

  29. Fellermann K, Stange EF (2001) Defensins—innate immunity at the epithelial frontier. Eur J Gastroenterol Hepatol 13:771–776

    Article  PubMed  CAS  Google Scholar 

  30. Taylor K, Barran PE, Dorin JR (2008) Structure–activity relationships in beta-defensin peptides. Biopolymers 90:1–7

    Article  PubMed  CAS  Google Scholar 

  31. Yang D, Liu ZH, Tewary P, Chen Q, de la Rosa G, Oppenheim JJ (2007) Defensin participation in innate and adaptive immunity. Curr Pharm Des 13:3131–3139

    Article  PubMed  CAS  Google Scholar 

  32. D’Aldebert E, Biyeyeme Bi Mve MJ, Mergey M et al (2009) Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology 136:1435–1443

    Article  PubMed  Google Scholar 

  33. Morland CM, Fear J, McNab G, Joplin R, Adams DH (1997) Promotion of leukocyte transendothelial cell migration by chemokines derived from human biliary epithelial cells in vitro. Proc Assoc Am Physicians 109:372–382

    PubMed  CAS  Google Scholar 

  34. Isse K, Harada K, Zen Y et al (2005) Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Hepatology 41:506–516

    Article  PubMed  CAS  Google Scholar 

  35. Shimoda S, Harada K, Niiro H et al (2010) CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology 51:567–575

    Article  PubMed  CAS  Google Scholar 

  36. Selmi C, Mackay IR, Gershwin ME (2007) The immunological milieu of the liver. Semin Liver Dis 27:129–139

    Article  PubMed  CAS  Google Scholar 

  37. Yokomori H, Oda M, Ogi M et al (2005) Expression of adhesion molecules on mature cholangiocytes in canal of Hering and bile ductules in wedge biopsy samples of primary biliary cirrhosis. World J Gastroenterol 11:4382–4389

    Google Scholar 

  38. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW (2005) ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 106:584–592

    Google Scholar 

  39. Leon MP, Bassendine MF, Gibbs P, Thick M, Kirby JA (1997) Immunogenicity of biliary epithelium: study of the adhesive interaction with lymphocytes. Gastroenterology 112:968–977

    Google Scholar 

  40. Cruickshank SM, Southgate J, Selby PJ, Trejdosiewicz LK (1998) Expression and cytokine regulation of immune recognition elements by normal human biliary epithelial and established liver cell lines in vitro. J Hepatol 29:550–558

    Google Scholar 

  41. Adams DH, Afford SC (2002) The role of cholangiocytes in the development of chronic inflammatory liver disease. Front Biosci 7:e276–e285

    Google Scholar 

  42. Aagaard BD, Heyworth MF, Oesterle AL, Jones AL, Way LW (1996) Intestinal immunisation with Escherichia coli protects rats against Escherichia coli induced cholangitis. Gut 39:136–140

    Google Scholar 

  43. Mostov KE (1994) Transepithelial transport of immunoglobulins. Annu Rev Immunol 12:63–84

    Article  PubMed  CAS  Google Scholar 

  44. Nakagawa T, Zhu H, Morishima N et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  45. Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2:420–430

    Google Scholar 

  46. Takeda K, Kojima Y, Ikejima K et al (2008) Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci U S A 105:10895–10900

    Article  PubMed  CAS  Google Scholar 

  47. Bai J, Odin JA (2003) Apoptosis and the liver: relation to autoimmunity and related conditions. Autoimmun Rev 2:36–42

    Article  PubMed  Google Scholar 

  48. Lleo A, Selmi C, Invernizzi P, Podda M, Gershwin ME (2008) The consequences of apoptosis in autoimmunity. J Autoimmun 31:257–262

    Google Scholar 

  49. Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35:445–455

    Google Scholar 

  50. Oikawa T, Takahashi H, Ishikawa T et al (2007) Intrahepatic expression of the co-stimulatory molecules programmed death-1, and its ligands in autoimmune liver disease. Pathol Int 57:485–492

    Article  PubMed  CAS  Google Scholar 

  51. Mataki N, Kikuchi K, Kawai T et al (2007) Expression of PD-1, PD-L1, and PD-L2 in the liver in autoimmune liver diseases. Am J Gastroenterol 102:302–312

    Article  PubMed  CAS  Google Scholar 

  52. Afford SC, Ahmed-Choudhury J, Randhawa S et al (2001) CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human intrahepatic biliary epithelial cells. FASEB J 15:2345–2354

    Article  PubMed  CAS  Google Scholar 

  53. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390:350–351

    Article  PubMed  CAS  Google Scholar 

  54. Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109:41–50

    PubMed  CAS  Google Scholar 

  55. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898

    Article  PubMed  CAS  Google Scholar 

  56. Henson PM (2005) Dampening inflammation. Nat Immunol 6:1179–1181

    Article  PubMed  CAS  Google Scholar 

  57. Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179:1317–1330

    Article  PubMed  CAS  Google Scholar 

  58. Casiano CA, Martin SJ, Green DR, Tan EM (1996) Selective cleavage of nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis. J Exp Med 184:765–770

    Article  PubMed  CAS  Google Scholar 

  59. Casciola-Rosen LA, Anhalt GJ, Rosen A (1995) DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med 182:1625–1634

    Article  PubMed  CAS  Google Scholar 

  60. Huang FP, Platt N, Wykes M et al (2000) A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 191:435–444

    Article  PubMed  CAS  Google Scholar 

  61. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191:423–434

    Article  PubMed  CAS  Google Scholar 

  62. Johansson U, Walther-Jallow L, Smed-Sorensen A, Spetz AL (2007) Triggering of dendritic cell responses after exposure to activated, but not resting, apoptotic PBMCs. J Immunol 179:1711–1720

    Google Scholar 

  63. Rovere P, Manfredi AA, Vallinoto C et al (1998) Dendritic cells preferentially internalize apoptotic cells opsonized by anti-beta2-glycoprotein I antibodies. J Autoimmun 11:403–411

    Google Scholar 

  64. Frisoni L, McPhie L, Colonna L et al (2005) Nuclear autoantigen translocation and autoantibody opsonization lead to increased dendritic cell phagocytosis and presentation of nuclear antigens: a novel pathogenic pathway for autoimmunity? J Immunol 175:2692–2701

    Google Scholar 

  65. Tzeng TC, Suen JL, Chiang BL (2006) Dendritic cells pulsed with apoptotic cells activate self-reactive T-cells of lupus mice both in vitro and in vivo. Rheumatology (Oxford) 45:1230–1237

    Google Scholar 

  66. Gershwin ME, Mackay IR (2008) The causes of primary biliary cirrhosis: convenient and inconvenient truths. Hepatology 47:737–745

    Article  PubMed  Google Scholar 

  67. Mao TK, Davis PA, Odin JA, Coppel RL, Gershwin ME (2004) Sidechain biology and the immunogenicity of PDC-E2, the major autoantigen of primary biliary cirrhosis. Hepatology 40:1241–1248

    Article  PubMed  CAS  Google Scholar 

  68. Moteki S, Leung PS, Coppel RL et al (1996) Use of a designer triple expression hybrid clone for three different lipoyl domain for the detection of antimitochondrial autoantibodies. Hepatology 24:97–103

    Article  PubMed  CAS  Google Scholar 

  69. Moteki S, Leung PS, Dickson ER et al (1996) Epitope mapping and reactivity of autoantibodies to the E2 component of 2-oxoglutarate dehydrogenase complex in primary biliary cirrhosis using recombinant 2-oxoglutarate dehydrogenase complex. Hepatology 23:436–444

    Article  PubMed  CAS  Google Scholar 

  70. Miyakawa H, Tanaka A, Kikuchi K et al (2001) Detection of antimitochondrial autoantibodies in immunofluorescent AMA-negative patients with primary biliary cirrhosis using recombinant autoantigens. Hepatology 34:243–248

    Article  PubMed  CAS  Google Scholar 

  71. Oertelt S, Rieger R, Selmi C et al (2007) A sensitive bead assay for antimitochondrial antibodies: chipping away at AMA-negative primary biliary cirrhosis. Hepatology 45:659–665

    Article  PubMed  CAS  Google Scholar 

  72. Muratori P, Muratori L, Ferrari R et al (2003) Characterization and clinical impact of antinuclear antibodies in primary biliary cirrhosis. Am J Gastroenterol 98:431–437

    Article  PubMed  Google Scholar 

  73. Liu H, Norman GL, Shums Z et al (2010) PBC screen: an IgG/IgA dual isotype ELISA detecting multiple mitochondrial and nuclear autoantibodies specific for primary biliary cirrhosis. J Autoimmun 35:436–442

    Article  PubMed  CAS  Google Scholar 

  74. Agmon-Levin N, Shapira Y, Selmi C et al (2010) A comprehensive evaluation of serum autoantibodies in primary biliary cirrhosis. J Autoimmun 34:55–58

    Article  PubMed  CAS  Google Scholar 

  75. Hu CJ, Zhang FC, Li YZ, Zhang X (2010) Primary biliary cirrhosis: what do autoantibodies tell us? World J Gastroenterol 16:3616–3629

    Article  PubMed  CAS  Google Scholar 

  76. Gershwin ME, Selmi C, Worman HJ et al (2005) Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology 42:1194–1202

    Article  PubMed  Google Scholar 

  77. Selmi C, Gershwin ME, Lindor KD et al (2007) Quality of life and everyday activities in patients with primary biliary cirrhosis. Hepatology 46:1836–1843

    Article  PubMed  Google Scholar 

  78. Hirschfield GM, Liu X, Xu C et al (2009) Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 360:2544–2555

    Google Scholar 

  79. Liu X, Invernizzi P, Lu Y et al (2010) Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 42:658–660

    Google Scholar 

  80. Hunt KA, Zhernakova A, Turner G et al (2008) Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 40:395–402

    Google Scholar 

  81. International Multiple Sclerosis Genetics Consortium (IMSGC) (2010) IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci. Genes Immun 11:397–405

    Google Scholar 

  82. Remmers EF, Plenge RM, Lee AT et al. (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357:977–986.

    Google Scholar 

  83. Amano K, Leung PS, Rieger R et al (2005) Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid. J Immunol 174:5874–5883

    Google Scholar 

  84. Lindor KD, Gershwin ME, Poupon R, Kaplan M, Bergasa NV, Heathcote EJ (2009) Primary biliary cirrhosis. Hepatology 50:291–308

    Google Scholar 

  85. Kita H, Lian ZX, Van de Water J et al (2002) Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 195:113–123

    Google Scholar 

  86. Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y (1995) HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 181:1835–1845

    Google Scholar 

  87. Van de Water J, Ansari A, Prindiville T et al (1995) Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis. J Exp Med 181:723–733

    Google Scholar 

  88. Kita H, Matsumura S, He XS et al (2002) Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 109:1231–1240

    Google Scholar 

  89. Shimoda S, Van de Water J, Ansari A et al (1998) Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis. J Clin Invest 102:1831–1840

    Google Scholar 

  90. Yang GX, Lian ZX, Chuang YH et al (2008) Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 47:1974–1982

    Article  PubMed  Google Scholar 

  91. Ueno Y, Ambrosini YM, Moritoki Y, Ridgway WM, Gershwin ME (2010) Murine models of autoimmune cholangitis. Curr Opin Gastroenterol 26:274–279

    Article  PubMed  CAS  Google Scholar 

  92. Wakabayashi K, Lian ZX, Moritoki Y et al (2006) IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology 44:1240–1249

    Article  PubMed  CAS  Google Scholar 

  93. Tsuda M, Ambrosini YM, Zhang W et al (2011) Fine phenotypic and functional characterization of effector cluster of differentiation 8 positive T cells in human patients with primary biliary cirrhosis. Hepatology 54:1293–1302

    Article  PubMed  CAS  Google Scholar 

  94. Odin JA, Huebert RC, Casciola-Rosen L, LaRusso NF, Rosen A (2001) Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis. J Clin Invest 108:223–232

    PubMed  CAS  Google Scholar 

  95. Koga H, Sakisaka S, Ohishi M, Sata M, Tanikawa K (1997) Nuclear DNA fragmentation and expression of Bcl-2 in primary biliary cirrhosis. Hepatology 25:1077–1084

    Article  PubMed  CAS  Google Scholar 

  96. Harada K, Ozaki S, Gershwin ME, Nakanuma Y (1997) Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis. Hepatology 26:1399–1405

    Article  PubMed  CAS  Google Scholar 

  97. Sakisaka S, Koga H, Sasatomi K, Mimura Y, Kawaguchi T, Tanikawa K (1997) Biliary secretion of endotoxin and pathogenesis of primary biliary cirrhosis. Yale J Biol Med 70:403–408

    PubMed  CAS  Google Scholar 

  98. Harada K, Kono N, Tsuneyama K, Nakanuma Y (1998) Cell-kinetic study of proliferating bile ductules in various hepatobiliary diseases. Liver 18:277–284

    Google Scholar 

  99. Harada K, Furubo S, Ozaki S, Hiramatsu K, Sudo Y, Nakanuma Y (2001) Increased expression of WAF1 in intrahepatic bile ducts in primary biliary cirrhosis relates to apoptosis. J Hepatol 34:500–506

    Google Scholar 

  100. Poupon RE, Lindor KD, Pares A, Chazouilleres O, Poupon R, Heathcote EJ (2003) Combined analysis of the effect of treatment with ursodeoxycholic acid on histologic progression in primary biliary cirrhosis. J Hepatol 39:12–16

    Article  PubMed  CAS  Google Scholar 

  101. Corpechot C, Carrat F, Bahr A, Chretien Y, Poupon RE, Poupon R (2005) The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology 128:297–303

    Article  PubMed  CAS  Google Scholar 

  102. Poupon RE, Balkau B, Eschwege E, Poupon R (1991) A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. UDCA-PBC Study Group. N Engl J Med 324:1548–1554

    Article  PubMed  CAS  Google Scholar 

  103. Podda M, Ghezzi C, Battezzati PM et al (1989) Effect of different doses of ursodeoxycholic acid in chronic liver disease. Dig Dis Sci 34:59S–65S

    Article  PubMed  CAS  Google Scholar 

  104. Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 101:2790–2799

    Article  PubMed  CAS  Google Scholar 

  105. Amaral JD, Castro RE, Sola S, Steer CJ, Rodrigues CM (2007) p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis. J Biol Chem 282:34250–34259

    Google Scholar 

  106. Chapman R, Fevery J, Kalloo A et al (2010) Diagnosis and management of primary sclerosing cholangitis. Hepatology 51:660–678

    Google Scholar 

  107. Fausa O, Schrumpf E, Elgjo K (1991) Relationship of inflammatory bowel disease and primary sclerosing cholangitis. Semin Liver Dis 11:31–39

    Google Scholar 

  108. Hov JR, Boberg KM, Karlsen TH (2008) Autoantibodies in primary sclerosing cholangitis. World J Gastroenterol 14:3781–3791

    Google Scholar 

  109. Aron JH, Bowlus CL (2009) The immunobiology of primary sclerosing cholangitis. Semin Immunopathol 31:383–397

    Google Scholar 

  110. Martins EB, Graham AK, Chapman RW, Fleming KA (1996) Elevation of gamma delta T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology 23:988–993

    Google Scholar 

  111. Eksteen B, Grant AJ, Miles A et al (2004) Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med 200:1511–1517

    Google Scholar 

  112. Dienes HP, Lohse AW, Gerken G et al (1997) Bile duct epithelia as target cells in primary biliary cirrhosis and primary sclerosing cholangitis. Virchows Arch 431:119–124

    Article  PubMed  CAS  Google Scholar 

  113. Ansari B, Coates PJ, Greenstein BD, Hall PA (1993) In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. J Pathol 170:1–8

    Google Scholar 

  114. Kaserer K et al (1998) Characterization of the inflammatory infiltrate autoimmune cholangitis. A morphological and immunhistochemical study. Virchows Arch 432(3):217–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Bowlus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawata, K., Kobayashi, Y., Gershwin, M.E. et al. The Immunophysiology and Apoptosis of Biliary Epithelial Cells: Primary Biliary Cirrhosis and Primary Sclerosing Cholangitis. Clinic Rev Allerg Immunol 43, 230–241 (2012). https://doi.org/10.1007/s12016-012-8324-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-012-8324-0

Keywords

Navigation