Skip to main content

Advertisement

Log in

Cellular Based Strategies for Microvascular Engineering

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Vascularization is a major hurdle in complex tissue and organ engineering. Tissues greater than 200 μm in diameter cannot rely on simple diffusion to obtain nutrients and remove waste. Therefore, an integrated vascular network is required for clinical translation of engineered tissues. Microvessels have been described as <150 μm in diameter, but clinically they are defined as <1 mm. With new advances in super microsurgery, vessels less than 1 mm can be anastomosed to the recipient circulation. However, this technical advancement still relies on the creation of a stable engineered microcirculation that is amenable to surgical manipulation and is readily perfusable. Microvascular engineering lays on the crossroads of microfabrication, microfluidics, and tissue engineering strategies that utilize various cellular constituents. Early research focused on vascularization by co-culture and cellular interactions, with the addition of angiogenic growth factors to promote vascular growth. Since then, multiple strategies have been utilized taking advantage of innovations in additive manufacturing, biomaterials, and cell biology. However, the anatomy and dynamics of native blood vessels has not been consistently replicated. Inconsistent results can be partially attributed to cell sourcing which remains an enigma for microvascular engineering. Variations of endothelial cells, endothelial progenitor cells, and stem cells have all been used for microvascular network fabrication along with various mural cells. As each source offers advantages and disadvantages, there continues to be a lack of consensus. Furthermore, discord may be attributed to incomplete understanding about cell isolation and characterization without considering the microvascular architecture of the desired tissue/organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AdEPC:

Adipose derived EPC

ANG:

Angiopoietin

AVL:

Arteriovenous loop

bFGF:

Basic fibroblast growth factor

BM:

Bone marrow

Dll4:

Delta-like 4

DMVEC:

Dermal microvascular endothelial cell

EB:

Embryoid body

EC:

Endothelial cell

ECFC:

Endothelial colony forming cell

ECM:

Extracellular membrane

eNOS:

Endothelial nitric oxide synthase

EPC:

Endothelial progenitor cell

ESC:

Embryonic stem cell

FGF:

Fibroblast growth factor

FLK-1:

Fetal liver kinase-1

HA:

Hydroxyapatite

HGF:

Hepatocyte growth factor

HIF:

Hypoxia-inducible factor

HUVEC:

Human umbilical vein umbilical cell

iPSC:

Induced pluripotent stem cell

MC:

Methylcellulose

MF:

Microvessel fragment

MMP:

Matrix metalloproteinase

MSC:

Mesenchymal stem cell

NHLF:

Normal human lung fibroblast

PCL:

Polycaprolactone

PDMS:

Polydimethylsiloxane

PECAM:

Platelet endothelial cell adhesion molecule

PEG:

Poly ethylene glycol

PLGA:

Poly(lactide-co-glycolide)

PNIPAAm:

Poly n-isopropyl acrylamide

SMA:

Smooth muscle actin

SVF:

Stromal vascular fraction

TCP:

Tri-calcium phosphate

TGF:

Transforming growth factor

TIMP:

Tissue inhibitor of metalloproteinase

VE:

Vascular endothelial

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

vWF:

von Willebrand factor

References

  1. Chim, H., Amer, H., Mardini, S., & Moran, S. L. (2014). Vascularized composite allotransplant in the realm of regenerative plastic surgery. Mayo Clinic Proceedings, 89, 1009–1020.

    Article  PubMed  Google Scholar 

  2. Rouwkema, J., Rivron, N. C., & van Blitterswijk, C. A. (2008). Vascularization in tissue engineering. Trends in Biotechnology, 26, 434–441.

    Article  CAS  PubMed  Google Scholar 

  3. Shanbhag, S., Pandis, N., Mustafa, K., Nyengaard, J. R., & Stavropoulos, A. (2017). Cell Cotransplantation Strategies for Vascularized Craniofacial Bone Tissue Engineering: A Systematic Review and Meta-Analysis of Preclinical In Vivo Studies. Tissue Engineering Part B: Reviews, 23, 11–117.

    Google Scholar 

  4. Phelps, E. A., & García, A. J. (2010). Engineering more than a cell: vascularization strategies in tissue engineering. Current Opinion in Biotechnology, 21, 704–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lovett, M., Lee, K., Edwards, A., & Kaplan, D. L. (2009). Vascularization strategies for tissue engineering. Tissue engineering Part B, Reviews, 15, 353–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cade, W. T. (2008). Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Physical Therapy, 88, 1322–1335.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marinescu, M. A., Löffler, A. I., Ouellette, M., Smith, L., Kramer, C. M., & Bourque, J. M. (2015). Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC: Cardiovascular Imaging, 8, 210–220.

    PubMed  Google Scholar 

  8. Weitz, J. I., Byrne, J., Clagett, G. P., et al. (1996). Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation, 94, 3026–3049.

    Article  CAS  PubMed  Google Scholar 

  9. Freisinger, E., Malyar, N. M., Reinecke, H., & Lawall, H. (2017). Impact of diabetes on outcome in critical limb ischemia with tissue loss: a large-scaled routine data analysis. Cardiovascular Diabetology, 16, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun, X., Altalhi, W., & Nunes, S. S. (2016). Vascularization strategies of engineered tissues and their application in cardiac regeneration. Advanced Drug Delivery Reviews, 96, 183–194.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Lamki, R. S., Bradley, J. R., & Pober, J. S. (2008). Endothelial cells in allograft rejection. Transplantation, 86, 1340–1348.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bae, H., Puranik, A. S., Gauvin, R., et al. (2012). Building vascular networks. Science Translational Medicine, 4, 160ps23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Risau, W., & Lemmon, V. (1988). Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Developmental Biology, 125, 441–450.

    Article  CAS  PubMed  Google Scholar 

  14. Eichmann A, Bouvrée K, Pardanaud L. Vasculogenesis and Angiogenesis in Development. In: Marmé D, Fusenig N, (Ed) Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008:31-45.

    Chapter  Google Scholar 

  15. Chung, A. S., & Ferrara, N. (2011). Developmental and pathological angiogenesis. Annual Review of Cell and Developmental Biology, 27, 563–584.

    Article  CAS  PubMed  Google Scholar 

  16. Goldie, L. C., Nix, M. K., & Hirschi, K. K. (2008). Embryonic vasculogenesis and hematopoietic specification. Organogenesis, 4, 257–263.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patel-Hett, S., & D’Amore, P. A. (2011). Signal transduction in vasculogenesis and developmental angiogenesis. The International Journal of Developmental Biology, 55, 353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garcia, M. D., & Larina, I. V. (2014). Vascular development and hemodynamic force in the mouse yolk sac. Frontiers in Physiology, 5, 308.

    PubMed  PubMed Central  Google Scholar 

  19. Gerhardt, H., Golding, M., Fruttiger, M., et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of Cell Biology, 161, 1163–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research, 95, 343–353.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S., Chen, T. T., Barber, C. L., et al. (2007). Autocrine VEGF signaling is required for vascular homeostasis. Cell, 130, 691–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shibuya, M. (2006). Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis, 9, 225–230.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z., Neiva, K. G., Lingen, M. W., Ellis, L. M., & Nör, J. E. (2010). VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death and Differentiation, 17, 499.

    Article  CAS  PubMed  Google Scholar 

  24. Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6, 389.

    Article  CAS  PubMed  Google Scholar 

  25. Sato, T. N., Tozawa, Y., Deutsch, U., et al. (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature, 376, 70.

    Article  CAS  PubMed  Google Scholar 

  26. Partanen, J., & Dumont, D. (1999). Functions of Tie1 and Tie2 receptor tyrosine kinases in vascular development. Vascular Growth Factors and Angiogenesis: Springer, 159–172.

  27. Savant, S., La Porta, S., Budnik, A., et al. (2015). The orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in tip and stalk cells. Cell Reports, 12, 1761–1773.

    Article  CAS  PubMed  Google Scholar 

  28. Lyden, D., Young, A. Z., Zagzag, D., et al. (1999). Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature, 401, 670.

    Article  CAS  PubMed  Google Scholar 

  29. Kroll, J., & Waltenberger, J. (1998). VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochemical and Biophysical Research Communications, 252, 743–746.

    Article  CAS  PubMed  Google Scholar 

  30. Kim, Y.-M., Namkoong, S., Yun, Y.-G., et al. (2007). Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells. Biological and Pharmaceutical Bulletin, 30, 1674–1679.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, J., Somanath, P. R., Razorenova, O., et al. (2005). Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nature Medicine, 11, 1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Somanath, P. R., Razorenova, O. V., Chen, J., & Byzova, T. V. (2006). Akt1 in endothelial cell and angiogenesis. Cell Cycle, 5, 512–518.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, H.-M., Kang, D.-K., Kim, H. Y., Kang, S. S., & Chang, S.-I. (2007). Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochemical and Biophysical Research Communications, 352, 509–513.

    Article  CAS  PubMed  Google Scholar 

  34. DeLisser, H. M., Christofidou-Solomidou, M., Strieter, R. M., et al. (1997). Involvement of endothelial PECAM-1/CD31 in angiogenesis. The American Journal of Pathology, 151, 671.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jakobsson, L., Franco, C. A., Bentley, K., et al. (2010). Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nature Cell Biology, 12, 943.

    Article  CAS  PubMed  Google Scholar 

  36. Birdsey, G. M., Dryden, N. H., Amsellem, V., et al. (2008). Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood, 111, 3498–3506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dejana, E., Orsenigo, F., & Lampugnani, M. G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 121, 2115–2122.

    Article  CAS  PubMed  Google Scholar 

  38. Forghany, Z., Robertson, F., Lundby, A., Olsen, J. V., & Baker, D. A. (2017). Control of endothelial cell tube formation by Notch ligand intracellular domain interactions with activator protein 1 (AP-1). Journal of Biological Chemistry.

  39. Leslie, J. D., Ariza-McNaughton, L., Bermange, A. L., McAdow, R., Johnson, S. L., & Lewis, J. (2007). Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development, 134, 839–844.

    Article  CAS  PubMed  Google Scholar 

  40. Suzuma, K., Naruse, K., Suzuma, I., et al. (2000). Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. Journal of Biological Chemistry, 275, 40725–40731.

    Article  CAS  PubMed  Google Scholar 

  41. Doughervermazen, M., Hulmes, J. D., Bohlen, P., & Terman, B. I. (1994). Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor. Biochemical and Biophysical Research Communications, 205, 728–738.

    Article  CAS  Google Scholar 

  42. Moroianu, J., & Riordan, J. F. (1994). Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proceedings of the National Academy of Sciences, 91, 1677–1681.

    Article  CAS  Google Scholar 

  43. Koblizek, T. I., Weiss, C., Yancopoulos, G. D., Deutsch, U., & Risau, W. (1998). Angiopoietin-1 induces sprouting angiogenesis in vitro. Current Biology, 8, 529–532.

    Article  CAS  PubMed  Google Scholar 

  44. Kishimoto, K., Liu, S., Tsuji, T., Olson, K. A., & Hu, G.-F. (2005). Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene, 24, 445.

    Article  CAS  PubMed  Google Scholar 

  45. Pavlov, N., Frendo, J.-L., Guibourdenche, J., Degrelle, S. A., Evain-Brion, D., & Badet, J. (2014). Angiogenin expression during early human placental development; association with blood vessel formation. BioMed Research International, 2014.

  46. Shibuya, M. (2011). Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes & Cancer, 2, 1097–1105.

    Article  CAS  Google Scholar 

  47. Pitulescu, M. E., Schmidt, I., Giaimo, B. D., et al. (2017). Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nature Cell Biology, 19, 915.

    Article  CAS  PubMed  Google Scholar 

  48. Hellstrom, M., Phng, L. K., Hofmann, J. J., et al. (2007). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 445, 776–780.

    Article  CAS  PubMed  Google Scholar 

  49. Eklund, L., Kangas, J., & Saharinen, P. (2017). Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clinical Science (London, England), 131, 87–103.

    Article  CAS  Google Scholar 

  50. Jośko, J., & Mazurek, M. (2004). Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Medical Science Monitor, 10, RA89–RA98.

    PubMed  Google Scholar 

  51. Craig, M. P., Grajevskaja, V., Liao, H.-K., et al. (2015). Etv2 and Fli1b Function Together as Key Regulators of Vasculogenesis and Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 865–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baltrunaite, K., Craig, M. P., Palencia Desai, S., et al. (2017). ETS transcription factors Etv2 and Fli1b are required for tumor angiogenesis. Angiogenesis, 20, 307–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sato, Y., Teruyama, K., Nakano, T., et al. (2006). Role of Transcription Factors in Angiogenesis. Annals of the New York Academy of Sciences, 947, 117–123.

    Article  Google Scholar 

  54. Randi Anna, M., Sperone, A., Dryden Nicola, H., & Birdsey, G. M. (2009). Regulation of angiogenesis by ETS transcription factors. Biochemical Society Transactions, 37, 1248.

    Article  CAS  PubMed  Google Scholar 

  55. Hashiya, N., Jo, N., Aoki, M., et al. (2004). In vivo evidence of angiogenesis induced by transcription factor Ets-1: Ets-1 is located upstream of angiogenesis cascade. Circulation, 109, 3035–3041.

    Article  CAS  PubMed  Google Scholar 

  56. McLaughlin, F., Ludbrook, V. J., Cox, J., von Carlowitz, I., Brown, S., & Randi, A. M. (2001). Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation. Blood, 98, 3332–3339.

    Article  CAS  PubMed  Google Scholar 

  57. Rudders, S., Gaspar, J., Madore, R., et al. (2001). ESE-1 is a novel transcriptional mediator of inflammation that interacts with NF-κB to regulate the inducible nitric-oxide synthase gene. Journal of Biological Chemistry, 276, 3302–3309.

    Article  CAS  PubMed  Google Scholar 

  58. Christensen, R. A., Fujikawa, K., Madore, R., Oettgen, P., & Varticovski, L. (2002). NERF2, a member of the Ets family of transcription factors, is increased in response to hypoxia and angiopoietin-1: A potential mechanism for Tie2 regulation during hypoxia. Journal of Cellular Biochemistry, 85, 505–515.

    Article  CAS  PubMed  Google Scholar 

  59. Edel, M. (1999). Analysis of the TEL protein during tumour angiogenesis. Anticancer Research, 19, 2945–2951.

    CAS  PubMed  Google Scholar 

  60. Spyropoulos, D. D., Pharr, P. N., Lavenburg, K. R., et al. (2000). Hemorrhage, Impaired Hematopoiesis, and Lethality in Mouse Embryos Carrying a Targeted Disruption of the Fli1Transcription Factor. Molecular and Cellular Biology, 20, 5643–5652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zheng, H., Wasylyk, C., Ayadi, A., et al. (2003). The transcription factor Net regulates the angiogenic switch. Genes & Development, 17, 2283–2297.

    Article  CAS  Google Scholar 

  62. Xu, L., & Komatsu, M. (2009). Promoter Cloning and Characterization of the Anti-vascular Proliferation Gene, R-ras ROLE OF ETS-AND SP-BINDING MOTIFS. Journal of Biological Chemistry, 284, 2706–2718.

    Article  CAS  PubMed  Google Scholar 

  63. Dube, A., Thai, S., Gaspar, J., et al. (2001). Elf-1 is a transcriptional regulator of the Tie2 gene during vascular development. Circulation Research, 88, 237–244.

    Article  CAS  PubMed  Google Scholar 

  64. Khachigian, L. M., Resnick, N., Gimbrone, M. A., & Collins, T. (1995). Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. The Journal of Clinical Investigation, 96, 1169–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Val, S. (2011). Key transcriptional regulators of early vascular development. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1469–1475.

    Article  CAS  PubMed  Google Scholar 

  66. Potente, M., Urbich, C., K-i, S., et al. (2005). Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. The Journal of Clinical Investigation, 115, 2382–2392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alabdi, L., He, M., Yang, Q., Norvil, A. B., & Gowher, H. (2018). The transcription factor Vezf1 represses the expression of the antiangiogenic factor Cited2 in endothelial cells. Journal of Biological Chemistry.

  68. Sacilotto, N., Chouliaras, K. M., Nikitenko, L. L., et al. (2016). MEF2 transcription factors are key regulators of sprouting angiogenesis. Genes & Development, 30, 2297–2309.

    Article  CAS  Google Scholar 

  69. Henderson, A. M., Wang, S.-J., Taylor, A. C., Aitkenhead, M., & Hughes, C. C. W. (2001). The Basic Helix-Loop-Helix Transcription Factor HESR1 Regulates Endothelial Cell Tube Formation. Journal of Biological Chemistry, 276, 6169–6176.

    Article  CAS  PubMed  Google Scholar 

  70. Esser, J. S., Charlet, A., Schmidt, M., et al. (2017). The neuronal transcription factor NPAS4 is a strong inducer of sprouting angiogenesis and tip cell formation. Cardiovascular Research, 113, 222–223.

    Article  CAS  PubMed  Google Scholar 

  71. Winnik, S., Klinkert, M., Kurz, H., et al. (2009). HoxB5 induces endothelial sprouting in vitro and modifies intussusceptive angiogenesis in vivo involving angiopoietin-2. Cardiovascular Research, 83, 558–565.

    Article  CAS  PubMed  Google Scholar 

  72. Randi, A. M., Sperone, A., Dryden, N. H., & Birdsey, G. M. (2009). Regulation of angiogenesis by ETS transcription factors. Biochemical Society Transactions, 37, 1248–1253.

    Article  CAS  PubMed  Google Scholar 

  73. Sakai, E., Miura, Y., Suzuki-Kouyama, E., et al. (2017). A mammalian mirtron miR-1224 promotes tube-formation of human primary endothelial cells by targeting anti-angiogenic factor epsin2. Scientific Reports, 7, 5541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qian, Q., Wenkui, S., Wen, Z., et al. (2017). The role of microRNA-93 regulating angiopoietin2 in the formation of malignant pleural effusion. Cancer Medicine, 6, 1036–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, Q., Jia, C., Wang, P., et al. (2014). MicroRNA-505 identified from patients with essential hypertension impairs endothelial cell migration and tube formation. International Journal of Cardiology, 177, 925–934.

    Article  PubMed  Google Scholar 

  76. Wang, P., Luo, Y., Duan, H., et al. (2013). MicroRNA 329 Suppresses Angiogenesis by Targeting CD146. Molecular and Cellular Biology, 33, 3689–3699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, S., Aurora, A. B., Johnson, B. A., et al. (2008). The Endothelial-Specific MicroRNA miR-126 Governs Vascular Integrity and Angiogenesis. Developmental Cell, 15, 261–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2016). The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. Journal of Molecular and Cellular Cardiology, 97, 47–55.

    Article  CAS  PubMed  Google Scholar 

  79. Chen, Y., & Gorski, D. H. (2008). Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 111, 1217–1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fasanaro, P., D'Alessandra, Y., Di Stefano, V., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283, 15878–15883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Suárez, Y., Fernández-Hernando, C., Yu, J., et al. (2008). Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences, 105, 14082–14087.

    Article  Google Scholar 

  82. Li, Y., Song, Y.-H., Li, F., Yang, T., Lu, Y. W., & Geng, Y.-J. (2009). MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochemical and Biophysical Research Communications, 381, 81–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Suárez, Y., Fernández-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells. Circulation Research, 100, 1164.

    Article  CAS  PubMed  Google Scholar 

  84. Poliseno, L., Tuccoli, A., Mariani, L., et al. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 108, 3068.

    Article  CAS  PubMed  Google Scholar 

  85. Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101, 59–68.

    Article  CAS  PubMed  Google Scholar 

  86. Otsuka, M., Zheng, M., Hayashi, M., et al. (2008). Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. The Journal of Clinical Investigation, 118, 1944–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dang, L. T., Lawson, N. D., & Fish, J. E. (2013). MicroRNA control of vascular endothelial growth factor signaling output during vascular development. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, W. J., Yang, D. D., Na, S., Sandusky, G. E., Zhang, Q., & Zhao, G. (2005). Dicer is required for embryonic angiogenesis during mouse development. The Journal of Biological Chemistry, 280, 9330–9335.

    Article  CAS  PubMed  Google Scholar 

  89. Spinetti, G., Fortunato, O., Caporali, A., et al. (2013). MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circulation Research, 112, 335–346.

    Article  CAS  PubMed  Google Scholar 

  90. Gori, M., Trombetta, M., Santini, D., & Rainer, A. (2015). Tissue engineering and microRNAs: future perspectives in regenerative medicine. Expert Opinion on Biological Therapy, 15, 1601–1622.

    Article  CAS  PubMed  Google Scholar 

  91. Haralabopoulos, G. C., Grant, D. S., Kleinman, H. K., & Maragoudakis, M. E. (1997). Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. The American Journal of Physiology, 273, C239–C245.

    Article  CAS  PubMed  Google Scholar 

  92. Rioja, A. Y., Tiruvannamalai Annamalai, R., Paris, S., Putnam, A. J., & Stegemann, J. P. (2016). Endothelial sprouting and network formation in collagen- and fibrin-based modular microbeads. Acta Biomaterialia, 29, 33–41.

    Article  CAS  PubMed  Google Scholar 

  93. Nor, J. E., Peters, M. C., Christensen, J. B., et al. (2001). Engineering and characterization of functional human microvessels in immunodeficient mice. Laboratory Investigation, 81, 453–463.

    Article  CAS  PubMed  Google Scholar 

  94. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 4391–4396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Levenberg, S., Rouwkema, J., Macdonald, M., et al. (2005). Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 23, 879–884.

    Article  CAS  PubMed  Google Scholar 

  96. Ikuno, T., Masumoto, H., Yamamizu, K., et al. (2017). Efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLoS One, 12, e0173271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bezenah, J. R., Kong, Y. P., & Putnam, A. J. (2018). Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Scientific Reports, 8, 2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zanotelli, M. R., Ardalani, H., Zhang, J., et al. (2016). Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels. Acta Biomaterialia, 35, 32–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Asahara, T., & Kawamoto, A. (2004). Endothelial progenitor cells for postnatal vasculogenesis. American Journal of Physiology. Cell Physiology, 287, C572–C579.

    Article  CAS  PubMed  Google Scholar 

  100. Liang, T. Z., Zhu, L., Gao, W. L., et al. (2017). Coculture of endothelial progenitor cells and mesenchymal stem cells enhanced their proliferation and angiogenesis through PDGF and Notch signaling. FEBS Open Bio, 7, 1722–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou, L., Xia, J., Qiu, X., et al. (2015). In vitro evaluation of endothelial progenitor cells from adipose tissue as potential angiogenic cell sources for bladder angiogenesis. PLoS One, 10, e0117644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Levy, B., Ambrosio, G., Pries, A., & Struijker-Boudier, H. (2001). Microcirculation in hypertension: a new target for treatment? Circulation, 104, 735–740.

    Article  CAS  PubMed  Google Scholar 

  103. Armulik, A., Genove, G., & Betsholtz, C. (2011). Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215.

    Article  CAS  PubMed  Google Scholar 

  104. Wilgus, T. A. (2012). Growth Factor-Extracellular Matrix Interactions Regulate Wound Repair. Adv Wound Care (New Rochelle), 1, 249–254.

    Article  PubMed Central  Google Scholar 

  105. Sottile, J. (1654). Regulation of angiogenesis by extracellular matrix. Biochimica et Biophysica Acta, 2004, 13–22.

    Google Scholar 

  106. Neve, A., Cantatore, F. P., Maruotti, N., Corrado, A., & Ribatti, D. (2014). Extracellular matrix modulates angiogenesis in physiological and pathological conditions. BioMed Research International, 2014, 756078.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ghajar, C. M., George, S. C., & Putnam, A. J. (2008). Matrix metalloproteinase control of capillary morphogenesis. Critical Reviews in Eukaryotic Gene Expression, 18, 251–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Grant, D. S., & Kleinman, H. K. (1997). Regulation of capillary formation by laminin and other components of the extracellular matrix. EXS, 79, 317–333.

    CAS  PubMed  Google Scholar 

  109. Shepro D. Microvascular research: biology and pathology: Elsevier; 2005.

    Google Scholar 

  110. Jansson, L. (1994). The regulation of pancreatic islet blood flow. Diabetes/Metabolism Reviews, 10, 407–416.

    Article  CAS  PubMed  Google Scholar 

  111. Stratman, A. N., Pezoa, S. A., Farrelly, O. M., et al. (2017). Interactions between mural cells and endothelial cells stabilize the developing zebrafish dorsal aorta. Development, 144, 115–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Costa-Almeida, R., Granja, P. L., Soares, R., & Guerreiro, S. G. (2014). Cellular strategies to promote vascularisation in tissue engineering applications. European Cells & Materials, 28, 51–66 discussion -7.

    Article  CAS  Google Scholar 

  113. Cines, D. B., Pollak, E. S., Buck, C. A., et al. (1998). Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood, 91, 3527–3561.

    CAS  PubMed  Google Scholar 

  114. Hubbell, J. A., Massia, S. P., Desai, N. P., & Drumheller, P. D. (1991). Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology (N Y), 9, 568–572.

    CAS  Google Scholar 

  115. Hiob, M. A., She, S., Muiznieks, L. D., & Weiss, A. S. (2017). Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomaterials Science & Engineering, 3, 712–723.

    Article  CAS  Google Scholar 

  116. Fang, Y., & Eglen, R. M. (2017). Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov, 22, 456–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Nakatsu, M. N., Davis, J., & Hughes, C. C. (2007). Optimized fibrin gel bead assay for the study of angiogenesis. Journal of Visualized Experiments, 186.

  118. Laschke, M. W., Kleer, S., Scheuer, C., et al. (2012). Vascularisation of porous scaffolds is improved by incorporation of adipose tissue-derived microvascular fragments. European Cells & Materials, 24, 266–277.

    Article  CAS  Google Scholar 

  119. Baranski, J. D., Chaturvedi, R. R., Stevens, K. R., et al. (2013). Geometric control of vascular networks to enhance engineered tissue integration and function. Proceedings of the National Academy of Sciences of the United States of America, 110, 7586–7591.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jackson, C. J., & Nguyen, M. (1997). Human microvascular endothelial cells differ from macrovascular endothelial cells in their expression of matrix metalloproteinases. Int J Biochem Cell B, 29, 1167–1177.

    Article  CAS  Google Scholar 

  121. Unger, R. E., Sartoris, A., Peters, K., et al. (2007). Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials, 28, 3965–3976.

    Article  CAS  PubMed  Google Scholar 

  122. Sieveking, D. P., Buckle, A., Celermajer, D. S., & Ng, M. K. (2008). Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. Journal of the American College of Cardiology, 51, 660–668.

    Article  CAS  PubMed  Google Scholar 

  123. Novosel, E. C., Kleinhans, C., & Kluger, P. J. (2011). Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews, 63, 300–311.

    Article  CAS  PubMed  Google Scholar 

  124. Kim, S., & Von Recum, H. (2008). Endothelial stem cells and precursors for tissue engineering: Cell source, differentiation, selection, and application. Tissue Engineering Part B-Reviews, 14, 133–147.

    Article  CAS  PubMed  Google Scholar 

  125. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences, 78, 7634–7638.

    Article  CAS  Google Scholar 

  126. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  127. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    Article  CAS  PubMed  Google Scholar 

  128. Donny, H. P., & Sharon, G. (2009). Vascular engineering using human embryonic stem cells. Biotechnology Progress, 25, 2–9.

    Article  Google Scholar 

  129. Young, R. A. (2011). Control of the embryonic stem cell state. Cell, 144, 940–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rodolfa, K. T., & Eggan, K. (2006). A transcriptional logic for nuclear reprogramming. Cell, 126, 652–655.

    Article  CAS  PubMed  Google Scholar 

  131. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  132. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  133. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  134. Shao, L., & Wu, W. S. (2010). Gene-delivery systems for iPS cell generation. Expert Opinion on Biological Therapy, 10, 231–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yoshioka, N., Gros, E., Li, H. R., et al. (2013). Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell, 13, 246–254.

    Article  CAS  PubMed  Google Scholar 

  136. Zhou, Y. Y., & Zeng, F. (2013). Integration-free methods for generating induced pluripotent stem cells. Genomics, Proteomics & Bioinformatics, 11, 284–287.

    Article  CAS  Google Scholar 

  137. Song, H.-H. G., Rumma, R. T., Ozaki, C. K., Edelman, E. R., & Chen, C. S. (2018). Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell, 22, 340–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kurokawa, Y. K., Yin, R. T., Shang, M. R., Shirure, V. S., Moya, M. L., & George, S. C. (2017). Human Induced Pluripotent Stem Cell-Derived Endothelial Cells for Three-Dimensional Microphysiological Systems. Tissue Engineering Part C: Methods, 23, 474–484.

    Article  CAS  Google Scholar 

  139. Khakoo, A. Y., & Finkel, T. (2005). Endothelial progenitor cells. Annual Review of Medicine, 56, 79–101.

    Article  CAS  PubMed  Google Scholar 

  140. Ribatti, D. (2007). The discovery of endothelial progenitor cells. An historical review. Leukemia Research, 31, 439–444.

    Article  CAS  PubMed  Google Scholar 

  141. Asahara, T., Murohara, T., Sullivan, A., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.

    Article  CAS  PubMed  Google Scholar 

  142. Pearson, J. D. (2009). Endothelial progenitor cells - hype or hope? Journal of Thrombosis and Haemostasis, 7, 255–262.

    Article  CAS  PubMed  Google Scholar 

  143. Pearson, J. D. (2010). Endothelial progenitor cells--an evolving story. Microvascular Research, 79, 162–168.

    Article  CAS  PubMed  Google Scholar 

  144. Asahara, T., Kawamoto, A., & Masuda, H. (2011). Concise review: Circulating endothelial progenitor cells for vascular medicine. Stem Cells, 29, 1650–1655.

    Article  CAS  PubMed  Google Scholar 

  145. Long, D. A., Norman, J. T., & Fine, L. G. (2012). Restoring the renal microvasculature to treat chronic kidney disease. Nature Reviews. Nephrology, 8, 244–250.

    Article  CAS  PubMed  Google Scholar 

  146. Weiss, D. J. (2014). Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells, 32, 16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Menegazzo, L., Albiero, M., Avogaro, A., & Fadini, G. P. (2012). Endothelial progenitor cells in diabetes mellitus. Biofactors, 38, 194–202.

    Article  CAS  PubMed  Google Scholar 

  148. Wu, X., Rabkin-Aikawa, E., Guleserian, K. J., et al. (2004). Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. American Journal of Physiology. Heart and Circulatory Physiology, 287, H480–H487.

    Article  CAS  PubMed  Google Scholar 

  149. Young, P. P., Vaughan, D. E., & Hatzopoulos, A. K. (2007). Biologic properties of endothelial progenitor cells and their potential for cell therapy. Progress in Cardiovascular Diseases, 49, 421–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Critser, P. J., Voytik-Harbin, S. L., & Yoder, M. C. (2011). Isolating and defining cells to engineer human blood vessels. Cell Proliferation, 44(Suppl 1), 15–21.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yoder, M. C. (2012). Human endothelial progenitor cells. Cold Spring Harbor Perspectives in Medicine, 2, a006692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Peters, E. B., Christoforou, N., Leong, K. W., Truskey, G. A., & West, J. L. (2016). Poly(ethylene glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cellular and Molecular Bioengineering, 9, 38–54.

    Article  CAS  PubMed  Google Scholar 

  153. Chong, M. S., Ng, W. K., & Chan, J. K. (2016). Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges. Stem Cells Translational Medicine, 5, 530–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Peters, E. B. (2017). Endothelial Progenitor Cells for the Vascularization of Engineered Tissues. Tissue Engineering. Part B, Reviews.

  155. Medina, R. J., Barber, C. L., Sabatier, F., et al. (2017). Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Translational Medicine, 6, 1316–1320.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gehling, U. M., Ergun, S., Schumacher, U., et al. (2000). In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood, 95, 3106–3112.

    CAS  PubMed  Google Scholar 

  157. Peichev, M., Naiyer, A. J., Pereira, D., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958.

    CAS  PubMed  Google Scholar 

  158. Romagnani, P., Annunziato, F., Liotta, F., et al. (2005). CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circulation Research, 97, 314–322.

    Article  CAS  PubMed  Google Scholar 

  159. Reid, E., Guduric-Fuchs, J., O'Neill, C. L., et al. (2018). Preclinical Evaluation and Optimization of a Cell Therapy Using Human Cord Blood-Derived Endothelial Colony-Forming Cells for Ischemic Retinopathies. Stem Cells Translational Medicine, 7, 59–67.

    Article  CAS  PubMed  Google Scholar 

  160. Liu, H., Zhou, W., Ren, N., et al. (2017). Cell Sheets of Co-cultured Endothelial Progenitor Cells and Mesenchymal Stromal Cells Promote Osseointegration in Irradiated Rat Bone. Science Reporter, 7, 3038.

    Article  CAS  Google Scholar 

  161. Au, P., Daheron, L. M., Duda, D. G., et al. (2008). Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood, 111, 1302–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Melero-Martin, J. M., De Obaldia, M. E., Kang, S. Y., et al. (2008). Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation Research, 103, 194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Xu, J., Gong, T., Heng, B. C., & Zhang, C. F. (2017). A systematic review: differentiation of stem cells into functional pericytes. FASEB Journal, 31, 1775–1786.

    Article  CAS  PubMed  Google Scholar 

  164. Planat-Benard, V., Silvestre, J.-S., Cousin, B., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109, 656–663.

    Article  PubMed  Google Scholar 

  165. Hager, G., Holnthoner, W., Wolbank, S., et al. (2013). Three specific antigens to isolate endothelial progenitor cells from human liposuction material. Cytotherapy, 15, 1426–1435.

    Article  CAS  PubMed  Google Scholar 

  166. Hsueh, Y.-Y., Chang, Y.-J., Huang, C.-W., et al. (2015). Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury. Scientific Reports, 5, 14985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kondo, K., Shintani, S., Shibata, R., et al. (2009). Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 61–66.

    Article  CAS  PubMed  Google Scholar 

  168. Amerion, M., Valojerdi, M. R., Abroun, S., & Totonchi, M. (2017). Long term culture and differentiation of endothelial progenitor like cells from rat adipose derived stem cells. Cytotechnology, 1–17.

  169. Hur, J., Yoon, C.-H., Kim, H.-S., et al. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 288–293.

    Article  CAS  PubMed  Google Scholar 

  170. Kusuma, S., Zhao, S., & Gerecht, S. (2012). The extracellular matrix is a novel attribute of endothelial progenitors and of hypoxic mature endothelial cells. The FASEB Journal, 26, 4925–4936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gokcinar-Yagci, B., Uckan-Cetinkaya, D., & Celebi-Saltik, B. (2015). Pericytes: Properties, Functions and Applications in Tissue Engineering. Stem Cell Reviews, 11, 549–559.

    Article  CAS  Google Scholar 

  172. Walshe, T. E., Saint-Geniez, M., Maharaj, A. S., Sekiyama, E., Maldonado, A. E., & D'Amore, P. A. (2009). TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS One, 4, e5149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.

    Article  CAS  PubMed  Google Scholar 

  174. Mravic, M., Asatrian, G., Soo, C., et al. (2014). From pericytes to perivascular tumours: correlation between pathology, stem cell biology, and tissue engineering. International Orthopaedics, 38, 1819–1824.

    Article  PubMed  Google Scholar 

  175. Morin, K. T., Smith, A. O., Davis, G. E., & Tranquillo, R. T. (2013). Aligned human microvessels formed in 3D fibrin gel by constraint of gel contraction. Microvascular Research, 90, 12–22.

    Article  CAS  PubMed  Google Scholar 

  176. Chen, C. W., Okada, M., Proto, J. D., et al. (2013). Human pericytes for ischemic heart repair. Stem Cells, 31, 305–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Liu, H., Chen, B., & Lilly, B. (2008). Fibroblasts potentiate blood vessel formation partially through secreted factor TIMP-1. Angiogenesis, 11, 223–234.

    Article  CAS  PubMed  Google Scholar 

  178. Chen, X., Aledia, A. S., Popson, S. A., Him, L., Hughes, C. C., & George, S. C. (2010). Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Engineering. Part A, 16, 585–594.

    Article  CAS  PubMed  Google Scholar 

  179. Costa-Almeida, R., Gomez-Lazaro, M., Ramalho, C., Granja, P. L., Soares, R., & Guerreiro, S. G. (2014). Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Engineering Part A, 21, 1055–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Newman, A. C., Nakatsu, M. N., Chou, W., Gershon, P. D., & Hughes, C. C. (2011). The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Molecular Biology of the Cell, 22, 3791–3800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Berthod, F., Germain, L., Tremblay, N., & Auger, F. A. (2006). Extracellular matrix deposition by fibroblasts is necessary to promote capillary-like tube formation in vitro. Journal of Cellular Physiology, 207, 491–498.

    Article  CAS  PubMed  Google Scholar 

  182. Kunz-Schughart, L. A., Schroeder, J. A., Wondrak, M., et al. (2006). Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. American Journal of Physiology-Cell Physiology, 290, C1385–C1C98.

    Article  CAS  PubMed  Google Scholar 

  183. Hirschi, K. K., Burt, J. M., Hirschi, K. D., & Dai, C. (2003). Gap junction communication mediates transforming growth factor-β activation and endothelial-induced mural cell differentiation. Circulation Research, 93, 429–437.

    Article  CAS  PubMed  Google Scholar 

  184. Grainger, S. J., & Putnam, A. J. (2011). Assessing the permeability of engineered capillary networks in a 3D culture. PLoS One, 6, e22086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pill, K., Hofmann, S., Redl, H., & Holnthoner, W. (2015). Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison. Cell Regeneration, 4, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Verseijden, F., Sluijs, S. J. P.-V., Farrell, E., et al. (2010). Prevascular structures promote vascularization in engineered human adipose tissue constructs upon implantation. Cell Transplantation, 19, 1007–1020.

    Article  PubMed  Google Scholar 

  187. Rao, R. R., Peterson, A. W., Ceccarelli, J., Putnam, A. J., & Stegemann, J. P. (2012). Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis, 15, 253–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Duttenhoefer, F., Lara de Freitas, R., Meury, T., et al. (2013). 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. European Cells & Materials ECM, 26, 64–65.

    Google Scholar 

  189. Ghajar, C. M., Kachgal, S., Kniazeva, E., et al. (2010). Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Experimental Cell Research, 316, 813–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kachgal, S., Carrion, B., Janson, I. A., & Putnam, A. J. (2012). Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1-MMP. Journal of Cellular Physiology, 227, 3546–3555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Rohringer, S., Hofbauer, P., Schneider, K. H., et al. (2014). Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis, 17, 921–933.

    Article  CAS  PubMed  Google Scholar 

  192. Holnthoner, W., Hohenegger, K., Husa, A. M., et al. (2015). Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix. Journal of Tissue Engineering and Regenerative Medicine, 9, 127–136.

    Article  CAS  PubMed  Google Scholar 

  193. Merfeld-Clauss, S., Gollahalli, N., March, K. L., & Traktuev, D. O. (2010). Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Engineering Part A, 16, 2953–2966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hoying, J. B., Boswell, C. A., & Williams, S. K. (1996). Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cellular & Developmental Biology. Animal, 32, 409–419.

    Article  CAS  Google Scholar 

  195. Sun, X., Altalhi, W., & Nunes, S. S. (2016). Vascularization strategies of engineered tissues and their application in cardiac regeneration. Advanced Drug Delivery Reviews, 96, 183–194.

    Article  CAS  PubMed  Google Scholar 

  196. Frueh, F. S., & Spater, T. (2017). Scheuer C. Laschke MW. Isolation of Murine Adipose Tissue-derived Microvascular Fragments as Vascularization Units for Tissue Engineering. J Vis Exp: Menger MD.

    Google Scholar 

  197. Nunes, S. S., Krishnan, L., Gerard, C. S., et al. (2010). Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation, 17, 557–567.

    PubMed  PubMed Central  Google Scholar 

  198. Shepherd, B. R., Hoying, J. B., & Williams, S. K. (2007). Microvascular transplantation after acute myocardial infarction. Tissue Engineering, 13, 2871–2879.

    Article  PubMed  Google Scholar 

  199. Nunes, S. S., Rekapally, H., Chang, C. C., & Hoying, J. B. (2011). Vessel arterial-venous plasticity in adult neovascularization. PLoS One, 6, e27332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chang, C. C., & Hoying, J. B. (2006). Directed three-dimensional growth of microvascular cells and isolated microvessel fragments. Cell Transplantation, 15, 533–540.

    Article  PubMed  Google Scholar 

  201. Fish JE, Srivastava D. MicroRNAs: opening a new vein in angiogenesis research. Sci Signal 2009;2:pe1.

  202. Matsuda, N., Shimizu, T., Yamato, M., & Okano, T. (2007). Tissue Engineering Based on Cell Sheet Technology. Advanced Materials, 19, 3089–3099.

    Article  CAS  Google Scholar 

  203. Chao, C. Y., & Cheing, G. L. (2009). Microvascular dysfunction in diabetic foot disease and ulceration. Diabetes/Metabolism Research and Reviews, 25, 604–614.

    Article  CAS  PubMed  Google Scholar 

  204. Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 17(Suppl 4), 467–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6, 105–121.

    Article  CAS  PubMed  Google Scholar 

  206. Caliari, S. R., & Burdick, J. A. (2016). A practical guide to hydrogels for cell culture. Nature Methods, 13, 405–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Chan, E. C., Kuo, S. M., Kong, A. M., et al. (2016). Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications. PLoS One, 11, e0149799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rayner, S. G., & Zheng, Y. (2016). Engineered Microvessels for the Study of Human Disease. Journal of Biomechanical Engineering, 138.

  209. Tung, Y. T., Chang, C. C., Ju, J. C., & Wang, G. J. (2017). Fabrication of a reticular poly(lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks. Science and Technology of Advanced Materials, 18, 163–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Koike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J. S., & Jain, R. K. (2004). Tissue engineering: creation of long-lasting blood vessels. Nature, 428, 138–139.

    Article  CAS  PubMed  Google Scholar 

  211. Ma, D., Ren, L., Liu, Y., et al. (2010). Engineering scaffold-free bone tissue using bone marrow stromal cell sheets. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 28, 697–n/a.

    CAS  Google Scholar 

  212. Akahane, M., Shigematsu, H., Tadokoro, M., et al. (2010). Scaffold-free cell sheet injection results in bone formation. Journal of Tissue Engineering and Regenerative Medicine, 4, 404–411.

    Article  CAS  PubMed  Google Scholar 

  213. Elloumi-Hannachi, I., Yamato, M., & Okano, T. (2010). Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. Journal of Internal Medicine, 267, 54.

    Article  CAS  PubMed  Google Scholar 

  214. Shimizu, T., Sekine, H., Yang, J., et al. (2006). Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. The FASEB Journal, 20, 708–710.

    Article  CAS  PubMed  Google Scholar 

  215. Sekiya, S., Shimizu, T., & Okano, T. (2013). Vascularization in 3D tissue using cell sheet technology. Regenerative Medicine, 8, 371–377.

    Article  CAS  PubMed  Google Scholar 

  216. Asakawa, N., Shimizu, T., Tsuda, Y., et al. (2010). Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials, 31, 3903–3909.

    Article  CAS  PubMed  Google Scholar 

  217. Sasagawa, T., Shimizu, T., Sekiya, S., et al. (2010). Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials, 31, 1646–1654.

    Article  CAS  PubMed  Google Scholar 

  218. Ravnic, D. J., Leberfinger, A. N., Koduru, S. V., et al. (2017). Transplantation of Bioprinted Tissues and Organs: Technical and Clinical Challenges and Future Perspectives. Annals of Surgery, 266, 48–58.

    Article  PubMed  Google Scholar 

  219. Cui, X., & Boland, T. (2009). Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30, 6221–6227.

    Article  CAS  PubMed  Google Scholar 

  220. Datta, P., Ayan, B., & Ozbolat, I. T. (2017). Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomaterialia, 51, 1–20.

    Article  CAS  PubMed  Google Scholar 

  221. Zhang, Y. S., Yue, K., Aleman, J., et al. (2017). 3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 45, 148–163.

    Article  PubMed  Google Scholar 

  222. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A., & Lewis, J. A. (2016). Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 113, 3179–3184.

    Article  CAS  Google Scholar 

  223. Byambaa, B., Annabi, N., Yue, K., et al. (2017). Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue. Advanced Healthcare Materials, 6, n/a–n/a.

    Article  CAS  Google Scholar 

  224. Yahui, Z., Yin, Y., Howard, C., & Ibrahim TO. (2013). Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication, 5, 025004.

    Article  CAS  Google Scholar 

  225. Zhang, Y., Yu, Y., Akkouch, A., Dababneh, A., Dolati, F., & Ozbolat, I. T. (2015). In vitro study of directly bioprinted perfusable vasculature conduits. Biomaterials Science, 3, 134–143.

    Article  CAS  PubMed  Google Scholar 

  226. Yu, Y., Zhang, Y., Martin, J. A., & Ozbolat, I. T. (2013). Evaluation of Cell Viability and Functionality in Vessel-like Bioprintable Cell-Laden Tubular Channels. Journal of Biomechanical Engineering, 135, 091011–091019.

    Article  Google Scholar 

  227. Yu, Y., Zhang, Y., & Ozbolat, I. T. (2014). A hybrid bioprinting approach for scale-up tissue fabrication. Journal of Manufacturing Science and Engineering, 136, 061013.

    Article  Google Scholar 

  228. Mishra, R., Roux, B. M., Posukonis, M., et al. (2015). Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials, 77, 255–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Rouwkema, J., & Khademhosseini, A. (2016). Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks. Trends in Biotechnology, 34, 733–745.

    Article  CAS  PubMed  Google Scholar 

  230. Poldervaart, M. T., Gremmels, H., van Deventer, K., et al. (2014). Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. Journal of Controlled Release, 184, 58–66.

    Article  CAS  PubMed  Google Scholar 

  231. Campagnolo, P., Gormley, A. J., Chow, L. W., et al. (2016). Pericyte Seeded Dual Peptide Scaffold with Improved Endothelialization for Vascular Graft Tissue Engineering. Advanced Healthcare Materials, 5, 3046–3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Koepple, C., Kneser, U., & Schmidt, V. J. (2017). Microsurgical Approaches for In Vivo Prevascularization. In W. Holnthoner, A. Banfi, J. Kirkpatrick, & H. Redl (Eds.), Vascularization for Tissue Engineering and Regenerative Medicine (pp. 1–18). Cham: Springer International Publishing.

    Google Scholar 

  233. Erol, O. O., & Sira, M. (1980). New capillary bed formation with a surgically constructed arteriovenous fistula. Plastic and Reconstructive Surgery, 66, 109–115.

    Article  CAS  PubMed  Google Scholar 

  234. Mambally, S. R. T., & Santha, K. K. (2015). Utility of arteriovenous loops before free tissue transfer for post-traumatic leg defects. Indian Journal of Plastic Surgery: Official Publication of the Association of Plastic Surgeons of India, 48, 38.

    Article  Google Scholar 

  235. Taub, P. J., Chun, J. K., Zhang, W. X., Pham, N. D., Weinberg, H., & Silver, L. (1999). Staging arteriovenous fistula loops for lengthening of free-flap pedicles. Journal of Reconstructive Microsurgery, 15, 123–125.

    Article  CAS  PubMed  Google Scholar 

  236. Lin, C.-H., Mardini, S., Lin, Y.-T., Yeh, J.-T., Wei, F.-C., & Chen, H.-C. (2004). Sixty-five clinical cases of free tissue transfer using long arteriovenous fistulas or vein grafts. Journal of Trauma and Acute Care Surgery, 56, 1107–1117.

    Article  Google Scholar 

  237. Atiyeh, B. S., Sfeir, R. E., Hussein, M. M., & Husami, T. (1995). Preliminary arteriovenous fistula for free-flap reconstruction in the diabetic foot. Plastic and Reconstructive Surgery, 95, 1062–1069.

    Article  CAS  PubMed  Google Scholar 

  238. Arkudas, A., Tjiawi, J., Bleiziffer, O., et al. (2007). Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model. Molecular Medicine, 13, 480–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Arkudas, A., Balzer, A., Buehrer, G., et al. (2013). Evaluation of Angiogenesis of Bioactive Glass in the Arteriovenous Loop Model. Tissue Engineering Part C: Methods, 19, 479–486.

    Article  CAS  Google Scholar 

  240. Beier, J. P., Horch, R. E., Hess, A., et al. (2010). Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. Journal of Tissue Engineering and Regenerative Medicine, 4, 216–223.

    Article  CAS  PubMed  Google Scholar 

  241. Zhang, B., Montgomery, M., Chamberlain, M. D., et al. (2016). Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials, 15, 669–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under BIRCWH award # K12HD055882 “Career Development Program in Women’s Health Research at Penn State”, the American Association of Plastic Surgeons Research Scholar Award, and a Penn State Junior Faculty Research Scholar Award (PA Tobacco Settlement Fund).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Srinivas V. Koduru or Dino J. Ravnic.

Ethics declarations

Conflict of interests

Authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koduru, S.V., Leberfinger, A.N., Pasic, D. et al. Cellular Based Strategies for Microvascular Engineering. Stem Cell Rev and Rep 15, 218–240 (2019). https://doi.org/10.1007/s12015-019-09877-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09877-4

Keywords

Navigation