Skip to main content

Advertisement

Log in

Optimization of Synthetic mRNA for Highly Efficient Translation and its Application in the Generation of Endothelial and Hematopoietic Cells from Human and Primate Pluripotent Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Identification of transcription factors that directly convert pluripotent stem cells (PSCs) into endothelial and blood cells and advances in the chemical modifications of messenger RNA (mRNA) offer alternative nucleic acid-based transgene-free approach for scalable production of these cells for drug screening and therapeutic purposes. Here we evaluated the effect of 5′ and 3′ RNA untranslated regions (UTRs) on translational efficiency of chemically-modified synthetic mRNA (modRNA) in human PSCs and showed that an addition of 5′UTR indeed enhanced protein expression. With the optimized modRNAs expressing ETV2 or ETV2 and GATA2, we are able to produce VE-cadherin+ endothelial cells and CD34+CD43+ hematopoietic progenitors, respectively, from human PSCs as well as non-human primate (NHP) PSCs. Overall, our findings provide valuable information on the design of in vitro transcription templates being used in PSCs and its broad applicability for basic research, disease modeling, and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Szabo, E., Rampalli, S., Risueno, R. M., et al. (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature, 468(7323), 521–526.

    Article  PubMed  CAS  Google Scholar 

  2. Vierbuchen, T., Ostermeier, A., Pang, Z. P., et al. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–1041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lis, R., Karrasch, C. C., Poulos, M. G., et al. (2017). Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature, 545(7655), 439 – 445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Elcheva, I., Brok-Volchanskaya, V., Kumar, A., et al. (2014). Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. Nature Communications, 5, 4372.

    Article  PubMed  CAS  Google Scholar 

  5. Oh, S., & Kessler, J. A. (2017). Design, assembly, production, and transfection of synthetic modified mRNA. Methods.

  6. Holtkamp, S., Kreiter, S., Selmi, A., et al. (2006). Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood, 108(13), 4009–4017.

    Article  PubMed  CAS  Google Scholar 

  7. Kranz, L. M., Diken, M., Haas, H., et al. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 534(7607), 396–401.

    Article  PubMed  CAS  Google Scholar 

  8. Warren, L., Manos, P. D., Ahfeldt, T., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618 – 630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kormann, M. S., Hasenpusch, G., Aneja, M. K., et al. (2011). Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotechnology, 29(2), 154–157.

    Article  PubMed  CAS  Google Scholar 

  10. Huppert, J. L., & Balasubramanian, S. (2005). Prevalence of quadruplexes in the human genome. Nucleic Acids Research, 33(9), 2908–2916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kumari, S., Bugaut, A., Huppert, J. L., et al. (2007). An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nature Chemical Biology, 3(4), 218 – 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. D’Souza, S. S., Maufort, J., Kumar, A., et al. (2016). GSK3beta inhibition promotes efficient myeloid and lymphoid hematopoiesis from non-human primate-induced pluripotent stem cells. Stem Cell Reports, 6(2), 243 – 56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chen, G., Gulbranson, D. R., Hou, Z., et al. (2011). Chemically defined conditions for human iPSC derivation and culture. Nature Methods, 8(5), 424–429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Uenishi, G., Theisen, D., Lee, J. H., et al. (2014). Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Reports, 3(6), 1073–1084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gebauer, F., & Hentze, M. W. (2004). Molecular mechanisms of translational control. Nature Reviews Molecular Cell Biology, 5(10), 827 – 835.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Kozak, M. (1994). Features in the 5′ non-coding sequences of rabbit α and β-globin mRNAs that affect translational efficiency. Journal of Molecular Biology, 235(1), 95–110.

    Article  PubMed  CAS  Google Scholar 

  17. Jiang, H., & Lucy, M. C. (2001). Variants of the 5′-untranslated region of the bovine growth hormone receptor mRNA: isolation, expression and effects on translational efficiency. Gene, 265(1–2), 45–53.

    Article  PubMed  CAS  Google Scholar 

  18. Conne, B., Stutz, A., & Vassalli, J. D. (2000). The 3′ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology? Nature Medicine, 6(6), 637 – 41.

    Article  PubMed  CAS  Google Scholar 

  19. Leonhardt, C., Schwake, G., Stogbauer, T. R., et al. (2014). Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers. Nanomedicine, 10(4), 679 – 88.

    Article  PubMed  CAS  Google Scholar 

  20. Corish, P., & Tyler-Smith, C. (1999). Attenuation of green fluorescent protein half-life in mammalian cells. Protein Engineering, 12(12), 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  21. Morita, R., Suzuki, M., Kasahara, H., et al. (2015). ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 112(1), 160–165.

    Article  PubMed  CAS  Google Scholar 

  22. Yamamizu, K., Matsunaga, T., Katayama, S., et al. (2012). PKA/CREB signaling triggers initiation of endothelial and hematopoietic cell differentiation via Etv2 induction. Stem Cells, 30(4), 687 – 696.

    Article  PubMed  CAS  Google Scholar 

  23. Sgourou, A., Routledge, S., Antoniou, M., et al. (2004). Thalassaemia mutations within the 5′UTR of the human beta-globin gene disrupt transcription. British Journal of Haematology, 124(6), 828 – 35.

    Article  PubMed  CAS  Google Scholar 

  24. Levenberg, S., Zoldan, J., Basevitch, Y., et al. (2007). Endothelial potential of human embryonic stem cells. Blood, 110(3), 806 – 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ng, E. S., Azzola, L., Bruveris, F. F., et al. (2016). Differentiation of human embryonic stem cells to HOXA + hemogenic vasculature that resembles the aorta-gonad-mesonephros. Nature Biotechnology, 34(11), 1168–1179.

    Article  PubMed  CAS  Google Scholar 

  26. Vodyanik, M. A., Bork, J. A., Thomson, J. A., et al. (2005). Human embryonic stem cell-derived CD34 + cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105(2), 617 – 626.

    Article  PubMed  CAS  Google Scholar 

  27. Wang, Z. Z., Au, P., Chen, T., et al. (2007). Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nature Biotechnology, 25(3), 317–318.

    Article  PubMed  CAS  Google Scholar 

  28. Patsch, C., Challet-Meylan, L., Thoma, E. C., et al. (2015). Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology, 17(8), 994–1003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Orlova, V. V., Drabsch, Y., Freund, C., et al. (2014). Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(1), 177 – 186.

    Article  PubMed  CAS  Google Scholar 

  30. Budde, M. L., Wiseman, R. W., Karl, J. A., et al. (2010). Characterization of Mauritian cynomolgus macaque major histocompatibility complex class I haplotypes by high-resolution pyrosequencing. Immunogenetics, 62(11–12), 773 – 780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wiseman, R. W., Karl, J. A., Bohn, P. S., et al. (2013). Haplessly hoping: macaque major histocompatibility complex made easy. ILAR Journal, 54(2), 196–210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wiseman, R. W., Wojcechowskyj, J. A., Greene, J. M., et al. (2007). Simian immunodeficiency virus SIVmac239 infection of major histocompatibility complex-identical cynomolgus macaques from Mauritius. Journal of Virology, 81(1), 349 – 361.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Cell Processing and Manipulation Core in the Translational Cores, and Physicians and Nurses at University of Wisconsin Carbone Cancer Center and Cincinnati Children’s Hospital Medical Center for obtaining and processing bone marrow samples and Translational Research Trials Office for providing the regulatory and administrative support for this endeavor. This work was supported by funds from the National Institute of Health (1R01HL132891, 4R01HL116221, and P51OD011106).

Author information

Authors and Affiliations

Authors

Contributions

K.S. designed and conducted experiments and wrote the manuscript, L.T. conducted eGFP experiments, V.B.V. conducted hematopoietic developmental assays, S.S.D. conducted NHP-related experiments, A.K. conducted endothelial developmental assays, I.S. conceptualized and supervised all aspects of the studies and wrote the manuscript.

Corresponding author

Correspondence to Kran Suknuntha.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 KB)

eGFP expression in non-human primate iPSC

. Bar graph showing eGFP mean fluorescence intensity (MFI) from MnCy0669 iPSC at 24 h after transfection with different eGFP modRNAs. Results are represented as mean ± SD from 3 independent experiments. * indicates significance (TIF 140 KB)

Quantitative PCR analyses of endothelial and hematopoietic genes

. Expression of indicated genes were calculated relative to GAPDH using ΔΔCt method. Results are represented as mean ± SD (n = 3). EC = endothelial cells, 43 + = CD43+ cells, CB = cord blood, BM = bone marrow, MNC = mononuclear cells, HUVEC = human umbilical vein endothelial cells (TIF 2474 KB)

Generation of hematopoietic cells from primate iPSC. A)

Representative picture of day 7 hematopoietic cells (arrow) formation from MnCy0669 iPSC. Flow cytometric histogram showing percentage of CD34 in the floating cell fraction. B) Representative picture of hematopoietic colonies and Wright-stained cytospin from MnCy0669 iPSC. Scale bar = 200 μm (TIF 633 KB)

Supplementary material 5 (DOCX 81 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suknuntha, K., Tao, L., Brok-Volchanskaya, V. et al. Optimization of Synthetic mRNA for Highly Efficient Translation and its Application in the Generation of Endothelial and Hematopoietic Cells from Human and Primate Pluripotent Stem Cells. Stem Cell Rev and Rep 14, 525–534 (2018). https://doi.org/10.1007/s12015-018-9805-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9805-1

Keywords

Navigation