Skip to main content
Log in

Cultured Mesenchymal Stem Cells Stimulate an Immune Response by Providing Immune Cells with Toll-Like Receptor 2 Ligand

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) serve as supporting and regulatory cells, by providing tissues with multiple factors and are also known for their immunosuppressive capabilities. Our laboratory had previously shown that MSCs expressed toll-like receptor (TLR) 2 and are activated by its ligand Pam3Cys. TLR2 is an important component of the innate immune system, as it recognizes bacterial lipopeptides, thus priming a pro-inflammatory immune response. This study showed that Pam3Cys attached extensively to cells of both wild-type and TLR2 deficient cultured MSCs, thus, independently of TLR2. The TLR2 independent binding occurred through the adsorption of the palmitoyl moieties of Pam3Cys. It was further showed that Pam3Cys was transferred from cultured MSCs to immune cells. Moreover, Pam3Cys provided to the immune cells induced a pro-inflammatory response in vitro and in vivo. Overall, it is demonstrated herein that a TLR2 ligand bound to MSCs also through a TLR2 independent mechanism. Furthermore, the ligand incorporated by MSCs is subsequently released to stimulate an immune response both in vitro and in vivo. It is thus suggested that during bacterial infection, stromal cells may retain a reservoir of the TLR2 ligands, in a long-term manner, and release them slowly to maintain an immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zipori D. Biology of Stem Cells and the Molecular Basis of the Stem State: Humana Press; 2009.

  2. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  3. Zipori, D., & Bol, S. (1979). The role of fibroblastoid cells and macrophages from mouse bone marrow in the in vitro growth promotion of haemopoietic tumour cells. Experimental Hematology, 7, 206–218.

    CAS  PubMed  Google Scholar 

  4. Muguruma, Y., Yahata, T., Miyatake, H., et al. (2006). Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood, 107, 1878–1887.

    Article  CAS  PubMed  Google Scholar 

  5. Malhotra, D., Fletcher, A. L., Astarita, J., et al. (2012). Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nature Immunology, 13, 499–510.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Schajnovitz, A., Itkin, T., D’Uva, G., et al. (2011). CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nature Immunology, 12, 391–398.

    Article  CAS  PubMed  Google Scholar 

  7. Cho, Y. M., Kim, J. H., Kim, M., et al. (2012). Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PloS One, 7, e32778.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Plumas, J., Chaperot, L., Richard, M. J., Molens, J. P., Bensa, J. C., & Favrot, M. C. (2005). Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia, 19, 1597–1604.

    Article  CAS  PubMed  Google Scholar 

  9. Corcione, A., Benvenuto, F., Ferretti, E., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.

    Article  CAS  PubMed  Google Scholar 

  10. Pradier, A., Passweg, J., Villard, J., & Kindler, V. (2011). Human bone marrow stromal cells and skin fibroblasts inhibit natural killer cell proliferation and cytotoxic activity. Cell Transplantation, 20, 681–691.

    Article  PubMed  Google Scholar 

  11. Spaggiari, G. M., Abdelrazik, H., Becchetti, F., & Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113, 6576–6583.

    Article  CAS  PubMed  Google Scholar 

  12. Ghannam, S., Pene, J., Moquet-Torcy, G., Jorgensen, C., & Yssel, H. (2010). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. The Journal of Immunology, 185, 302–312.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, X. X., Zhang, Y., Liu, B., et al. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105, 4120–4126.

    Article  CAS  PubMed  Google Scholar 

  14. Levin, S., Pevsner-Fischer, M., Kagan, S., et al. (2014). Divergent levels of LBP and TGFbeta1 in murine MSCs lead to heterogenic response to TLR and proinflammatory cytokine activation. Stem Cell Reviews, 10, 376–388.

    Article  CAS  PubMed  Google Scholar 

  15. Pevsner-Fischer, M., Morad, V., Cohen-Sfady, M., et al. (2007). Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood, 109, 1422–1432.

    Article  CAS  PubMed  Google Scholar 

  16. O’Neill, L. A., Golenbock, D., & Bowie, A. G. (2013). The history of Toll-like receptors - redefining innate immunity. Nature Reviews Immunology, 13, 453–460.

    Article  PubMed  Google Scholar 

  17. Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124, 783–801.

    Article  CAS  PubMed  Google Scholar 

  18. Akira, S., & Hemmi, H. (2003). Recognition of pathogen-associated molecular patterns by TLR family. Immunology Letters, 85, 85–95.

    Article  CAS  PubMed  Google Scholar 

  19. Kawai, T., & Akira, S. (2007). Signaling to NF-kappaB by Toll-like receptors. Trends in Molecular Medicine, 13, 460–469.

    Article  CAS  PubMed  Google Scholar 

  20. Akira, S., Takeda, K., & Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2, 675–680.

    Article  CAS  PubMed  Google Scholar 

  21. Zahringer, U., Lindner, B., Inamura, S., Heine, H., & Alexander, C. (2008). TLR2 - promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology, 213, 205–224.

    Article  PubMed  Google Scholar 

  22. Akira, S., & Takeda, K. (2004). Toll-like receptor signalling. Nature Reviews Immunology, 4, 499–511.

    Article  CAS  PubMed  Google Scholar 

  23. Lewenza, S., Vidal-Ingigliardi, D., & Pugsley, A. P. (2006). Direct visualization of red fluorescent lipoproteins indicates conservation of the membrane sorting rules in the family Enterobacteriaceae. Journal of Bacteriology, 188, 3516–3524.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kang, J. Y., Nan, X., Jin, M. S., et al. (2009). Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity, 31, 873–884.

    Article  CAS  PubMed  Google Scholar 

  25. Aliprantis, A. O., Yang, R. B., Mark, M. R., et al. (1999). Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science, 285, 736–739.

    Article  CAS  PubMed  Google Scholar 

  26. Bessler, W., Resch, K., Hancock, E., & Hantke, K. (1977). Induction of lymphocyte proliferation and membrane changes by lipopeptide derivatives of the lipoprotein from the outer membrane of Escherichia coli. Zeitschrift für Immunitätsforschung. Immunobiology, 153, 11–22.

    CAS  PubMed  Google Scholar 

  27. Henderson, B., Poole, S., & Wilson, M. (1996). Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiological Reviews, 60, 316–341.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Jin, M. S., Kim, S. E., Heo, J. Y., et al. (2007). Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 130, 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  29. Buwitt-Beckmann, U., Heine, H., Wiesmuller, K. H., et al. (2006). TLR1- and TLR6-independent recognition of bacterial lipopeptides. The Journal of Biological Chemistry, 281, 9049–9057.

    Article  CAS  PubMed  Google Scholar 

  30. Farhat, K., Riekenberg, S., Heine, H., et al. (2008). Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. Journal of Leukocyte Biology, 83, 692–701.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshimura, A., Lien, E., Ingalls, R. R., Tuomanen, E., Dziarski, R., & Golenbock, D. (1999). Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. The Journal of Immunology, 163, 1–5.

    CAS  PubMed  Google Scholar 

  32. Ranoa, D. R., Kelley, S. L., & Tapping, R. I. (2013). Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex. The Journal of Biological Chemistry, 288, 9729–9741.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Scheuer, W. V., Biesert, L., & Bessler, W. G. (1986). Binding of a synthetic analogue of mitogenic bacterial lipoprotein to murine major histocompatibility complex (MHC) gene products. Biological Chemistry Hoppe-Seyler, 367, 1085–1094.

    Article  CAS  PubMed  Google Scholar 

  34. Berg, M., Offermanns, S., Seifert, R., & Schultz, G. (1994). Synthetic lipopeptide Pam3CysSer(Lys)4 is an effective activator of human platelets. The American Journal of Physiology, 266, C1684–C1691.

    CAS  PubMed  Google Scholar 

  35. Deifl, S., Kitzmuller, C., Steinberger, P., et al. (2014). Differential activation of dendritic cells by toll-like receptors causes diverse differentiation of naive CD4+ T cells from allergic patients. Allergy, 69, 1602–1609.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Facci, L., Barbierato, M., Marinelli, C., Argentini, C., Skaper, S. D., & Giusti, P. (2014). Toll-like receptors 2, −3 and −4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1beta release. Scientific Reports, 4, 6824.

    Article  CAS  PubMed  Google Scholar 

  37. Lim, E. K., Mitchell, P. J., Brown, N., et al. (2013). Regiospecific methylation of a dietary flavonoid scaffold selectively enhances IL-1beta production following Toll-like receptor 2 stimulation in THP-1 monocytes. The Journal of Biological Chemistry, 288, 21126–21135.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Fattore, E., & Fanelli, R. (2013). Palm oil and palmitic acid: a review on cardiovascular effects and carcinogenicity. International Journal of Food Sciences and Nutrition, 64, 648–659.

    Article  CAS  PubMed  Google Scholar 

  39. Wright, J. D., & Green, C. (1971). The role of the plasma membrane in fatty acid uptake by rat liver parenchymal cells. The Biochemical Journal, 123, 837–844.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bastiat, G., Oliger, P., Karlsson, G., Edwards, K., & Lafleur, M. (2007). Development of non-phospholipid liposomes containing a high cholesterol concentration. Langmuir, 23, 7695–7699.

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen, D. T., Ludlow, M., van Amerongen, G., et al. (2012). Evaluation of synthetic infection-enhancing lipopeptides as adjuvants for a live-attenuated canine distemper virus vaccine administered intra-nasally to ferrets. Vaccine, 30, 5073–5080.

    Article  CAS  PubMed  Google Scholar 

  42. Sieling, P. A., Chung, W., Duong, B. T., Godowski, P. J., & Modlin, R. L. (2003). Toll-like receptor 2 ligands as adjuvants for human Th1 responses. The Journal of Immunology, 170, 194–200.

    Article  CAS  PubMed  Google Scholar 

  43. Zaitseva, M., Romantseva, T., Blinova, K., et al. (2012). Use of human MonoMac6 cells for development of in vitro assay predictive of adjuvant safety in vivo. Vaccine, 30, 4859–4865.

    Article  CAS  PubMed  Google Scholar 

  44. Slovin, S. F., Ragupathi, G., Musselli, C., et al. (2003). Fully synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer: clinical trial results with alpha-N-acetylgalactosamine-O-serine/threonine conjugate vaccine. Journal of Clinical Oncology, 21, 4292–4298.

    Article  CAS  PubMed  Google Scholar 

  45. Vitiello, A., Ishioka, G., Grey, H. M., et al. (1995). Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection. I. Induction of a primary cytotoxic T lymphocyte response in humans. The Journal of Clinical Investigation, 95, 341–349.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Zipori, D., Friedman, A., Tamir, M., Silverberg, D., & Malik, Z. (1984). Cultured mouse marrow cell lines: interactions between fibroblastoid cells and monocytes. Journal of Cellular Physiology, 118, 143–152.

    Article  CAS  PubMed  Google Scholar 

  47. Shani, N., Rubin-Lifshitz, H., Peretz-Cohen, Y., et al. (2009). Incomplete T-cell receptor-beta peptides target the mitochondrion and induce apoptosis. Blood, 113, 3530–3541.

    Article  CAS  PubMed  Google Scholar 

  48. Gambhir, V., Yildiz, C., Mulder, R., et al. (2012). The TLR2 agonists lipoteichoic acid and Pam3CSK4 induce greater pro-inflammatory responses than inactivated Mycobacterium butyricum. Cellular Immunology, 280, 101–107.

    Article  CAS  PubMed  Google Scholar 

  49. Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111, 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  50. Schoenborn, J. R., & Wilson, C. B. (2007). Regulation of interferon-gamma during innate and adaptive immune responses. Advances in Immunology, 96, 41–101.

    Article  CAS  PubMed  Google Scholar 

  51. Fraszczak, J., Trad, M., Janikashvili, N., et al. (2010). Peroxynitrite-dependent killing of cancer cells and presentation of released tumor antigens by activated dendritic cells. The Journal of Immunology, 184, 1876–1884.

    Article  CAS  PubMed  Google Scholar 

  52. Lei, J., Wang, Z., Hui, D., et al. (2011). Ligation of TLR2 and TLR4 on murine bone marrow-derived mesenchymal stem cells triggers differential effects on their immunosuppressive activity. Cellular Immunology, 271, 147–156.

    Article  CAS  PubMed  Google Scholar 

  53. Barton, G. M., & Kagan, J. C. (2009). A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Reviews Immunology, 9, 535–542.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol;11:373–84.

  55. DelaRosa O, Lombardo E. Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediators Inflamm;2010:865601.

  56. Hua, F., Ma, J., Ha, T., et al. (2008). Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. Journal of Neuroimmunology, 199, 75–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Levitan I, Shentu TP. Impact of oxLDL on Cholesterol-Rich Membrane Rafts. J Lipids;2011:730209.

  58. Bassoe, C. F., Li, N., Ragheb, K., Lawler, G., Sturgis, J., & Robinson, J. P. (2003). Investigations of phagosomes, mitochondria, and acidic granules in human neutrophils using fluorescent probes. Cytometry. Part B, Clinical Cytometry, 51, 21–29.

    Article  PubMed  Google Scholar 

  59. Shohet, S. B., Nathan, D. G., & Karnovsky, M. L. (1968). Stages in the incorporation of fatty acids into red blood cells. The Journal of Clinical Investigation, 47, 1096–1108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Arduini, A., Mancinelli, G., Radatti, G. L., Dottori, S., Molajoni, F., & Ramsay, R. R. (1992). Role of carnitine and carnitine palmitoyltransferase as integral components of the pathway for membrane phospholipid fatty acid turnover in intact human erythrocytes. The Journal of Biological Chemistry, 267, 12673–12681.

    CAS  PubMed  Google Scholar 

  61. Fraszczak J, Trad M, Janikashvili N, et al. Peroxynitrite-dependent killing of cancer cells and presentation of released tumor antigens by activated dendritic cells. J Immunol;184:1876–84.

  62. Lei J, Wang Z, Hui D, et al. Ligation of TLR2 and TLR4 on murine bone marrow-derived mesenchymal stem cells triggers differential effects on their immunosuppressive activity. Cell Immunol;271:147–56.

  63. Takeuchi, O., Hoshino, K., Kawai, T., et al. (1999). Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity, 11, 443–451.

    Article  CAS  PubMed  Google Scholar 

  64. Vasselon, T., Detmers, P. A., Charron, D., & Haziot, A. (2004). TLR2 recognizes a bacterial lipopeptide through direct binding. The Journal of Immunology, 173, 7401–7405.

    Article  CAS  PubMed  Google Scholar 

  65. Wagner, B., & Henschler, R. (2013). Fate of intravenously injected mesenchymal stem cells and significance for clinical application. Advances in Biochemical Engineering/Biotechnology, 130, 19–37.

    Article  PubMed  Google Scholar 

  66. Yu, B., Hailman, E., & Wright, S. D. (1997). Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids. The Journal of Clinical Investigation, 99, 315–324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Manukyan, M., Triantafilou, K., Triantafilou, M., et al. (2005). Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. European Journal of Immunology, 35, 911–921.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

TLR2−/− mice were kindly provided by Prof Shizuo Akira (Osaka University, Osaka, Japan).

Prof. Meir Wilchek kindly provided his thoughtful insights and biochemical advices.

This study was supported by the Kirk Center for Childhood Cancer and Immunological Disorders and the Jeanne and Joseph Nissim Foundation for Life Sciences Research. D.Z. is the incumbent of the Joe and Celia Weinstein Professorial Chair.

Conflict of Interest

None of the authors had conflicts of interest while performing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Zipori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

supplementary video 1

(MP4 8223 kb)

supplementary video 2

(MP4 7890 kb)

supplementary figure 1

(GIF 21 kb)

High resolution image (TIFF 8642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinstock, A., Pevsner-Fischer, M., Porat, Z. et al. Cultured Mesenchymal Stem Cells Stimulate an Immune Response by Providing Immune Cells with Toll-Like Receptor 2 Ligand. Stem Cell Rev and Rep 11, 826–840 (2015). https://doi.org/10.1007/s12015-015-9614-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-015-9614-8

Keywords

Navigation