Skip to main content
Log in

Olfactory Ensheathing Cells Promote Differentiation of Neural Stem Cells and Robust Neurite Extension

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Aims

The goal of this study was to gain insight into the signaling between olfactory ensheathing cells (OECs) and neural stem cells (NSCs). We sought to understand the impact of OECs on NSC differentiation and neurite extension and to begin to elucidate the factors involved in these interactions to provide new targets for therapeutic interventions.

Materials and Methods

We utilized lines of OECs that have been extremely well characterized in vitro and in vivo along with well studied NSCs in gels to determine the impact of the coculture in three dimensions. To further elucidate the signaling, we used conditioned media from the OECs as well as fractioned components on NSCs to determine the molecular weight range of the soluble factors that was most responsible for the NSC behavior.

Results

We found that the coculture of NSCs and OECs led to robust NSC differentiation and extremely long neural processes not usually seen with NSCs in three dimensional gels in vitro. Through culture of NSCs with fractioned OEC media, we determined that molecules larger than 30 kDa have the greatest impact on the NSC behavior.

Conclusions

Overall, our findings suggest that cocultures of NSCs and OECs may be a novel combination therapy for neural injuries including spinal cord injury (SCI). Furthermore, we have identified a class of molecules which plays a substantial role in the behavior that provides new targets for investigating pharmacological therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Keirstead, H. S., Nistor, G., Bernal, G., et al. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. Journal of Neuroscience, 25, 4694–4705.

    Article  CAS  PubMed  Google Scholar 

  2. Lee, S.-H., Lumelsky, N., Studer, L., Auerbach, J. M., & McKay, R. D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature, 18, 675–679.

    CAS  Google Scholar 

  3. Ramirez-Castillejo, C., Sanchez-Sanchez, F., Andreu-Agullo, C., et al. (2006). Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nature Neuroscience, 9, 331–339.

    Article  CAS  PubMed  Google Scholar 

  4. Lutolf, M. P., Gilbert, P. M., & Blau, H. M. (2009). Designing materials to direct stem-cell fate. Nature, 462, 433–441.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bunge, M. B. (2008). Novel combination strategies to repair the injured mammalian spinal cord. Journal of Spinal Cord Medicine, 31, 262–269.

    PubMed Central  PubMed  Google Scholar 

  6. Fitch, M. T., Doller, C., Combs, C. K., Landreth, G. E., & Silver, J. (1999). Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. Journal of Neuroscience, 19, 8182–8198.

    CAS  PubMed  Google Scholar 

  7. Lim, P. A., & Tow, A. M. (2007). Recovery and regeneration after spinal cord injury: a review and summary of recent literature. Annals of the Academy of Medicine, Singapore, 36, 49–57.

    PubMed  Google Scholar 

  8. Bartolomei, J. C., & Greer, C. A. (2000). Olfactory ensheathing cells: bridging the gap in spinal cord injury. Neurosurgery, 47, 1057–1069.

    Article  CAS  PubMed  Google Scholar 

  9. Richter, M. W., Fletcher, P. A., Liu, J., Tetzlaff, W., & Roskams, A. J. (2005). Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord. Journal of Neuroscience, 25, 10700–10711.

    Article  CAS  PubMed  Google Scholar 

  10. Novikova, L. N., Lobov, S., Wiberg, M., & Novikov, L. N. (2011). Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation. Experimental Neurology, 229, 132–142.

    Article  PubMed  Google Scholar 

  11. Toft, A., Tome, M., Barnett, S. C., & Riddell, J. S. (2013). A comparative study of glial and non-neural cell properties for transplant-mediated repair of the injured spinal cord. Glia, 61, 513–528.

    Article  PubMed  Google Scholar 

  12. Wilkinson, A. E, Kobelt, L. J, Leipzig, N. D. (2013). Immobilized ECM molecules and the effects of concentration and surface type on the control of NSC differentiation. J Biomed Mater Res A.

  13. Beites, C. L., Kawauchi, S., Crocker, C. E., & Calof, A. L. (2005). Identification and molecular regulation of neural stem cells in the olfactory epithelium. Experimental Cell Research, 306, 309–316.

    Article  CAS  PubMed  Google Scholar 

  14. Vincent, A. J., West, A. K., & Chuah, M. I. (2005). Morphological and functional plasticity of olfactory ensheathing cells. Journal of Neurocytology, 34, 65–80.

    Article  PubMed  Google Scholar 

  15. Li, Y., Field, P. M., & Raisman, G. (1997). Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science, 277, 2000–2002.

    Article  CAS  PubMed  Google Scholar 

  16. Ramon-Cueto, A., Plant, G. W., Avila, J., & Bunge, M. B. (1998). Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. Journal of Neuroscience, 18, 3803–3815.

    CAS  PubMed  Google Scholar 

  17. Lopez-Vales, R., Fores, J., Verdu, E., & Navarro, X. (2006). Acute and delayed transplantation of olfactory ensheathing cells promote partial recovery after complete transection of the spinal cord. Neurobiology of Disease, 21, 57–68.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, H., Chen, L., Xi, H., et al. (2009).[Olfactory ensheathing cells transplantation for central nervous system diseases in 1,255 patients]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi;23:14-20.

  19. Li, Y., Carlstedt, T., Berthold, C. H., & Raisman, G. (2004). Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone. Experimental Neurology, 188, 300–308.

    Article  PubMed  Google Scholar 

  20. Sasaki, M., Lankford, K. L., Zemedkun, M., & Kocsis, J. D. (2004). Identified olfactory ensheathing cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin. Journal of Neuroscience, 24, 8485–8493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lie, D. C., Song, H., Colamarino, S. A., Ming, G. L., & Gage, F. H. (2004). Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annual Review of Pharmacology and Toxicology, 44, 399–421.

    Article  CAS  PubMed  Google Scholar 

  22. Philippe Taupin, F. H. G. (2002). Adult neurogenesis and neural stem cells of the central nervous system in mammals. Journal of Neuroscience Research, 69, 745–749.

    Article  PubMed  Google Scholar 

  23. Shihabuddin, L. S., Ray, J., & Gage, F. H. (1997). FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Experimental Neurology, 148, 577–586.

    Article  CAS  PubMed  Google Scholar 

  24. Vacanti, M. P., Leonard, J. L., Dore, B., et al. (2001). Tissue-engineered spinal cord. Transplantation Proceedings, 33, 592–598.

    Article  CAS  PubMed  Google Scholar 

  25. Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Morshead, C. M., & Fehlings, M. G. (2006). Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. Journal of Neuroscience, 26, 3377–3389.

    Article  CAS  PubMed  Google Scholar 

  26. Teng, Y. D., Lavik, E. B., Qu, X., et al. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 3024–3029.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Burnstein, R. M., Foltynie, T., He, X., Menon, D. K., Svendsen, C. N., & Caldwell, M. A. (2004). Differentiation and migration of long term expanded human neural progenitors in a partial lesion model of Parkinson’s disease. International Journal of Biochemistry and Cell Biology, 36, 702–713.

    Article  CAS  PubMed  Google Scholar 

  28. Ostenfeld, T., Caldwell, M. A., Prowse, K. R., Linskens, M. H., Jauniaux, E., & Svendsen, C. N. (2000). Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Experimental Neurology, 164, 215–226.

    Article  CAS  PubMed  Google Scholar 

  29. Emgard, M., Holmberg, L., Samuelsson, E. B., et al. (2009). Human neural precursor cells continue to proliferate and exhibit low cell death after transplantation to the injured rat spinal cord. Brain Res.

  30. Cummings, B. J., Uchida, N., Tamaki, S. J., et al. (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 14069–14074.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yan, J., Xu, L., Welsh, A. M., et al. (2007). Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Medicine, 4, e39.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Pallini, R., Vitiani, L. R., Bez, A., et al. (2005). Homologous transplantation of neural stem cells to the injured spinal cord of mice. Neurosurgery, 57, 1014–1025. discussion -25.

    Article  PubMed  Google Scholar 

  33. Cao, Q. L., Zhang, Y. P., Howard, R. M., Walters, W. M., Tsoulfas, P., & Whittemore, S. R. (2001). Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Experimental Neurology, 167, 48–58.

    Article  CAS  PubMed  Google Scholar 

  34. Shukla, S., Chaturvedi, R. K., Seth, K., Roy, N. S., & Agrawal, A. K. (2009). Enhanced survival and function of neural stem cells-derived dopaminergic neurons under influence of olfactory ensheathing cells in parkinsonian rats. Journal of Neurochemistry, 109, 436–451.

    Article  CAS  PubMed  Google Scholar 

  35. Srivastava, N., Seth, K., Khanna, V. K., Ansari, R. W., & Agrawal, A. K. (2009). Long-term functional restoration by neural progenitor cell transplantation in rat model of cognitive dysfunction: co-transplantation with olfactory ensheathing cells for neurotrophic factor support. International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience, 27, 103–110.

    Article  CAS  Google Scholar 

  36. Silva, N. A., Cooke, M. J., Tam, R. Y., et al. (2012). The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials, 33, 6345–6354.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, G., Ao, Q., Gong, K., Zuo, H., Gong, Y., & Zhang, X. (2010). Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury. Cell Transplantation, 19, 1325–1337.

    Article  PubMed  Google Scholar 

  38. Luo, Y., Zou, Y., Yang, L., et al. (2013). Transplantation of NSCs with OECs alleviates neuropathic pain associated with NGF downregulation in rats following spinal cord injury. Neuroscience Letters, 549, 103–108.

    Article  CAS  PubMed  Google Scholar 

  39. Radtke, C., Akiyama, Y., Brokaw, J., et al. (2004). Remyelination of the nonhuman primate spinal cord by transplantation of H-transferase transgenic adult pig olfactory ensheathing cells. FASEB Journal, 18, 335–337.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Morshead, C. M., Reynolds, B. A., Craig, C. G., et al. (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron, 13, 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  41. Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  42. Lu, B., Kwan, T., Kurimoto, Y., Shatos, M., Lund, R. D., & Young, M. J. (2002). Transplantation of EGF-responsive neurospheres from GFP transgenic mice into the eyes of rd mice. Brain Research, 943, 292–300.

    Article  CAS  PubMed  Google Scholar 

  43. Goodman, M. N., Silver, J., & Jacobberger, J. W. (1993). Establishment and neurite outgrowth properties of neonatal and adult rat olfactory bulb glial cell lines. Brain Research, 619, 199–213.

    Article  CAS  PubMed  Google Scholar 

  44. Ramon-Cueto, A., & Avila, J. (1998). Olfactory ensheathing glia: properties and function. Brain Research Bulletin, 46, 175–187.

    Article  CAS  PubMed  Google Scholar 

  45. Audisio, C., Raimondo, S., Nicolino, S., et al. (2009). Morphological and biomolecular characterization of the neonatal olfactory bulb ensheathing cell line. Journal of Neuroscience Methods, 185, 89–98.

    Article  CAS  PubMed  Google Scholar 

  46. Roet, K. C., Bossers, K., Franssen, E. H., Ruitenberg, M. J., & Verhaagen, J. (2011). A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Experimental Neurology, 229, 10–45.

    Article  CAS  PubMed  Google Scholar 

  47. DeLucia, T. A., Conners, J. J., Brown, T. J., Cronin, C. M., Khan, T., & Jones, K. J. (2003). Use of a cell line to investigate olfactory ensheathing cell-enhanced axonal regeneration. Anatomical Record. Part B, New Anatomist, 271, 61–70.

    Article  PubMed  Google Scholar 

  48. Lipson, A. C., Widenfalk, J., Lindqvist, E., Ebendal, T., & Olson, L. (2003). Neurotrophic properties of olfactory ensheathing glia. Experimental Neurology, 180, 167–171.

    Article  PubMed  Google Scholar 

  49. Pastrana, E., Moreno-Flores, M. T., Gurzov, E. N., Avila, J., Wandosell, F., & Diaz-Nido, J. (2006). Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. Journal of Neuroscience, 26, 5347–5359.

    Article  CAS  PubMed  Google Scholar 

  50. Frisa, P. S., Goodman, M. N., Smith, G. M., Silver, J., & Jacobberger, J. W. (1994). Immortalization of immature and mature mouse astrocytes with SV40 T antigen. Journal of Neuroscience Research, 39, 47–56.

    Article  CAS  PubMed  Google Scholar 

  51. Honore, A., Le Corre, S., Derambure, C., et al. (2012). Isolation, characterization, and genetic profiling of subpopulations of olfactory ensheathing cells from the olfactory bulb. Glia, 60, 404–413.

    Article  PubMed  Google Scholar 

  52. Lo Furno, D., Pellitteri, R., Graziano, A. C., et al. (2013). Differentiation of human adipose stem cells into neural phenotype by neuroblastoma- or olfactory ensheathing cells-conditioned medium. Journal of Cellular Physiology, 228, 2109–2118.

    Article  CAS  PubMed  Google Scholar 

  53. Ziege, S., Baumgartner, W., & Wewetzer, K. (2013). Toward defining the regenerative potential of olfactory mucosa: establishment of Schwann cell-free adult canine olfactory ensheathing cell preparations suitable for transplantation. Cell Transplantation, 22, 355–367.

    Article  PubMed  Google Scholar 

  54. Moreno-Flores, M. T., Lim, F., Martin-Bermejo, M. J., Diaz-Nido, J., Avila, J., & Wandosell, F. (2003). Immortalized olfactory ensheathing glia promote axonal regeneration of rat retinal ganglion neurons. Journal of Neurochemistry, 85, 861–871.

    Article  CAS  PubMed  Google Scholar 

  55. Moreno-Flores, M. T., Bradbury, E. J., Martin-Bermejo, M. J., et al. (2006). A clonal cell line from immortalized olfactory ensheathing glia promotes functional recovery in the injured spinal cord. Molecular Therapy, 13, 598–608.

    Article  CAS  PubMed  Google Scholar 

  56. Simon, D., Martin-Bermejo, M. J., Gallego-Hernandez, M. T., et al. (2011). Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration. Glia, 59, 1458–1471.

    Article  PubMed  Google Scholar 

  57. Ao, Q., Wang, A. J., Chen, G. Q., Wang, S. J., Zuo, H. C., & Zhang, X. F. (2007). Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Medical Hypotheses, 69, 1234–1237.

    Article  CAS  PubMed  Google Scholar 

  58. Raisman, G. (2007). Repair of spinal cord injury by transplantation of olfactory ensheathing cells. Comptes Rendus Biologies, 330, 557–560.

    Article  PubMed  Google Scholar 

  59. Zhang, J., Wang, B., Xiao, Z., et al. (2008). Olfactory ensheathing cells promote proliferation and inhibit neuronal differentiation of neural progenitor cells through activation of Notch signaling. Neuroscience, 153, 406–413.

    Article  CAS  PubMed  Google Scholar 

  60. Cao, L., Zhu, Y. L., Su, Z., et al. (2007). Olfactory ensheathing cells promote migration of Schwann cells by secreted nerve growth factor. Glia, 55, 897–904.

    Article  PubMed  Google Scholar 

  61. Au, E., Richter, M. W., Vincent, A. J., et al. (2007). SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair. Journal of Neuroscience, 27, 7208–7221.

    Article  CAS  PubMed  Google Scholar 

  62. Higginson, J. R., & Barnett, S. C. (2011). The culture of olfactory ensheathing cells (OECs)–a distinct glial cell type. Experimental Neurology, 229, 2–9.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Zhang, X., Klueber, K. M., Guo, Z., et al. (2006). Induction of neuronal differentiation of adult human olfactory neuroepithelial-derived progenitors. Brain Research, 1073–1074, 109–119.

    Article  PubMed  Google Scholar 

  64. Heine, W., Conant, K., Griffin, J. W., & Hoke, A. (2004). Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Experimental Neurology, 189, 231–240.

    Article  CAS  PubMed  Google Scholar 

  65. Wang, L., Zhang, Z. G., Zhang, R. L., et al. (2006). Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. Journal of Neuroscience, 26, 5996–6003.

    Article  CAS  PubMed  Google Scholar 

  66. Sarig-Nadir, O., & Seliktar, D. (2010). The role of matrix metalloproteinases in regulating neuronal and nonneuronal cell invasion into PEGylated fibrinogen hydrogels. Biomaterials, 31, 6411–6416.

    Article  CAS  PubMed  Google Scholar 

  67. Whittemore, S. R., Morassutti, D. J., Walters, W. M., Liu, R. H., & Magnuson, D. S. K. (1999). Mitogen and substrate differentially affect the lineage restriction of adult rat subventricular zone neural precursor cell populations. Experimental Cell Research, 252, 75–95.

    Article  CAS  PubMed  Google Scholar 

  68. Kearns, S. M., Laywell, E. D., Kukekov, V. K., & Steindler, D. A. (2003). Extracellular matrix effects on neurosphere cell motility. Experimental Neurology, 182, 240–244.

    Article  CAS  PubMed  Google Scholar 

  69. Andressen, C., Adrian, S., Fässler, R., Arnhold, S., & Addicks, K. (2005). The contribution of beta1 integrins to neuronal migration and differentiation depends on extracellular matrix molecules. European Journal of Cell Biology, 84, 973–982.

    Article  CAS  PubMed  Google Scholar 

  70. Nkansah, M. K., Tzeng, S. Y., Holdt, A. M., & Lavik, E. B. (2008). Poly(lactic-co-glycolic acid) nanospheres and microspheres for short- and long-term delivery of bioactive ciliary neurotrophic factor. Biotechnology and Bioengineering, 100, 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  71. Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M., & McKay, R. D. (1996). Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes and Development, 10, 3129–3140.

    Article  CAS  PubMed  Google Scholar 

  72. Lachyankar, M. B., Condon, P. J., Quesenberry, P. J., Litofsky, N. S., Recht, L. D., & Ross, A. H. (1997). Embryonic precursor cells that express Trk receptors: induction of different cell fates by NGF, BDNF, NT-3, and CNTF. Experimental Neurology, 144, 350–360.

    Article  CAS  PubMed  Google Scholar 

  73. Rajan, P., & McKay, R. D. (1998). Multiple routes to astrocytic differentiation in the CNS. Journal of Neuroscience, 18, 3620–3629.

    CAS  PubMed  Google Scholar 

  74. Sendtner, M., Carroll, P., Holtmann, B., Hughes, R. A., & Thoenen, H. (1994). Ciliary neurotrophic factor. Journal of Neurobiology, 25, 1436–1453.

    Article  CAS  PubMed  Google Scholar 

  75. Blesch, A., & Tuszynski, M. H. (2003). Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination. Journal of Comparative Neurology, 467, 403–417.

    Article  CAS  PubMed  Google Scholar 

  76. Choi, K. C., Yoo, D. S., Cho, K. S., Huh, P. W., Kim, D. S., & Park, C. K. (2008). Effect of single growth factor and growth factor combinations on differentiation of neural stem cells. Journal of Korean Neurosurgery Society, 44, 375–381.

    Article  Google Scholar 

  77. Mollers, S., Heschel, I., Damink, L. H., et al. (2009). Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair. Tissue Engineering. Part A, 15, 461–472.

    Article  PubMed  Google Scholar 

  78. Novikova, L. N., Mosahebi, A., Wiberg, M., Terenghi, G., Kellerth, J. O., & Novikov, L. N. (2006). Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. Journal of Biomedical Materials Research. Part A, 77, 242–252.

    Article  PubMed  Google Scholar 

  79. Gerardo-Nava, J., Fuhrmann, T., Klinkhammer, K., et al. (2009). Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomedicine, 4, 11–30.

    Article  CAS  PubMed  Google Scholar 

  80. Hynes, S. R., Rauch, M. F., Bertram, J. P., & Lavik, E. B. (2009). A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation. Journal of Biomedical Materials Research. Part A, 89, 499–509.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors have no conflicts of interest. The authors would like to acknowledge NIH Director’s New Innovator Award Grant, DP20D007338. The authors would also like to acknowledge J. Silver for the generous gift of the OEC cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Lavik.

Additional information

Rosh Sethi and Roshan Sethi contributed equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, R., Sethi, R., Redmond, A. et al. Olfactory Ensheathing Cells Promote Differentiation of Neural Stem Cells and Robust Neurite Extension. Stem Cell Rev and Rep 10, 772–785 (2014). https://doi.org/10.1007/s12015-014-9539-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9539-7

Keywords

Navigation