Skip to main content
Log in

Disrupted WNT Signaling in Mouse Embryonic Stem Cells in the Absence of Calreticulin

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The role of endoplasmic reticulum (ER) homeostasis and protein quality control in the regulation of WNT signaling is not understood. Here we provide evidence for a role of calreticulin in the regulation of WNT signaling. We show that a deficiency in calreticulin disrupted WNT signaling, and prevented cell cycle progression via the miR-302 microRNA family. These effects were dependent on the Ca2+ buffering capacity of calreticulin, as the protein is important in regulating ER Ca2+ release and activation of Ca2+-dependent kinase and phosphatase cascades (including c-Src, Akt, and PTP1B). We also show that calreticulin plays a role in the secretion and ER retention of WNT3a, thereby affecting downstream WNT signaling. In calreticulin-deficient ES cells, the WNT and miR-302 dependent maintenance of the naïve ES cell state and the transition to primed pluripotency transition were lost, preventing cells from undergoing accurate differentiation. Together, these findings demonstrate unexpected roles of calreticulin and ER Ca2+ homeostasis/signaling in the canonical WNT signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

BMP:

Bone morphogenetic protein

BAPTA-AM:

1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid

CaMKII:

Ca2+/calmodulin kinase II

c/EBP:

CCAAT/enhancer binding protein

EpiS:

Epiblast like stem cell

Fgf:

Fibroblast growth factor

GSK3β:

Glycogen synthase kinase 3β

JNK:

c-Jun kinase

Klf4:

Krueppel-like factor 4

MEF2c:

Myocyte enhancer factor 2

αMHC:

α myosin heavy chain

NLK:

Nemo-like kinase

Oct-4:

Octamer-binding protein 4

Otx2:

Orthodenticle homeobox 2

PPAR:

Peroxisome proliferator-activated receptor

PTP1B:

Protein tyrosine phosphatase 1B

SERCA:

Sarco/endoplasmic reticulum Ca2+-ATPase

Smad:

Mothers against decapentaplegic homolog

Sox2:

Sex determining region Y-box 2

TCF:

T-cell factor

TGF:

Transforming growth factor

References

  1. Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I., & Opas, M. (2009). Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochemistry Journal, 417, 651–666.

    Article  CAS  Google Scholar 

  2. Fadel, M. P., Dziak, E., Lo, C. M., et al. (1999). Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. Journal of Biological Chemistry, 274, 15085–15094.

    Article  PubMed  CAS  Google Scholar 

  3. Faustino, R. S., Chiriac, A., Niederlander, N. J., et al. (2010). Decoded calreticulin-deficient embryonic stem cell transcriptome resolves latent cardiophenotype. Stem Cells, 28, 1281–1291.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Lynch, J., Guo, L., Gelebart, P., et al. (2005). Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca2+-dependent signaling cascade. Journal of Cell Biology, 170, 37–47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Li, J., Pucéat, M., Perez-Terzic, C., et al. (2002). Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis. Journal of Cell Biology, 158, 103–113.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Ueno, S., Weidinger, G., Osugi, T., et al. (2007). Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 9685–9690.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Paige, S. L., Osugi, T., Afanasiev, O. K., Pabon, L., Reinecke, H., & Murry, C. E. (2010). Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One, 5, e11134.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Cohen, E. D., Wang, Z., Lepore, J. J., et al. (2007). Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. Journal of Clinical Investigation, 117, 1794–1804.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149, 1192–1205.

    Article  PubMed  CAS  Google Scholar 

  10. Yang, F., Zeng, Q., Yu, G., Li, S., & Wang, C. Y. (2006). Wnt/beta-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cellular Signalling, 18, 679–687.

    Article  PubMed  CAS  Google Scholar 

  11. Lai, S. L., Chien, A. J., & Moon, R. T. (2009). Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Research, 19, 532–545.

    Article  PubMed  CAS  Google Scholar 

  12. Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T., & Kimelman, D. (1997). A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes & Development, 11, 2359–2370.

    Article  CAS  Google Scholar 

  13. Gottardi, C. J., & Gumbiner, B. M. (2004). Role for ICAT in beta-catenin-dependent nuclear signaling and cadherin functions. American Journal of Physiology. Cell Physiology, 286, C747–C756.

    Article  PubMed  CAS  Google Scholar 

  14. Luna-Ulloa, L. B., Hernandez-Maqueda, J. G., Castaneda-Patlan, M. C., & Robles-Flores, M. (2011). Protein kinase C in Wnt signaling: implications in cancer initiation and progression. IUBMB Life, 63, 915–921.

    Article  PubMed  CAS  Google Scholar 

  15. Szabo, E., Qiu, Y., Baksh, S., Michalak, M., & Opas, M. (2008). Calreticulin modulates commitment to adipocyte differentiation. Journal of Cell Biology, 182, 103–116.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Groenendyk, J., & Michalak, M. (2011). A genome-wide siRNA screen identifies novel Phospho-enzymes affecting Wnt/beta-catenin signaling in mouse embryonic stem cells. Stem Cell Reviews and Reports, 7, 910–926.

    Article  PubMed  Google Scholar 

  17. Coe, H., Jung, J., Groenendyk, J., Prins, D., & Michalak, M. (2010). ERp57 modulates STAT3 signaling from the lumen of the endoplasmic reticulum. Journal of Biological Chemistry, 285, 6725–6738.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Milner, R. E., Busaan, J., & Michalak, M. (1992). Isolation and characterization of different C-terminal fragments of dystrophin expressed in Escherichia coli. Biochemistry Journal, 288, 1037–1044.

    CAS  Google Scholar 

  19. Milner, R. E., Baksh, S., Shemanko, C., et al. (1991). Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. Journal of Biological Chemistry, 266, 7155–7165.

    PubMed  CAS  Google Scholar 

  20. Nakamura, K., Bossy-Wetzel, E., Burns, K., et al. (2000). Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. Journal of Cell Biology, 150, 731–740.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Montalibet, J., & Kennedy, B. P. (2004). Using yeast to screen for inhibitors of protein tyrosine phosphatase 1B. Biochemical Pharmacology, 68, 1807–1814.

    Article  PubMed  CAS  Google Scholar 

  22. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  23. Veeman, M. T., Axelrod, J. D., & Moon, R. T. (2003). A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Developmental Cell, 5, 367–377.

    Article  PubMed  CAS  Google Scholar 

  24. Subauste, M. C., Nalbant, P., Adamson, E. D., & Hahn, K. M. (2005). Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. Journal of Biological Chemistry, 280, 5676–5681.

    Article  PubMed  CAS  Google Scholar 

  25. Coghlan, M. P., Culbert, A. A., Cross, D. A., et al. (2000). Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chemistry & Biology, 7, 793–803.

    Article  CAS  Google Scholar 

  26. Fadel, M. P., Szewczenko-Pawlikowski, M., Leclerc, P., et al. (2001). Calreticulin affects ß-catenin associated pathways. Journal of Biological Chemistry, 276, 27083–27089.

    Article  PubMed  CAS  Google Scholar 

  27. Wu, Q., Huang, J. H., Sampson, E. R., et al. (2009). Smurf2 induces degradation of GSK-3beta and upregulates beta-catenin in chondrocytes: a potential mechanism for Smurf2-induced degeneration of articular cartilage. Experimental Cell Research, 315, 2386–2398.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Yum, S., Lee, S. J., Piao, S., et al. (2009). The role of the Ser/Thr cluster in the phosphorylation of PPPSP motifs in Wnt coreceptors. Biochemical and Biophysical Research Communications, 381, 345–349.

    Article  PubMed  CAS  Google Scholar 

  29. Bechard, M., & Dalton, S. (2009). Subcellular localization of glycogen synthase kinase 3beta controls embryonic stem cell self-renewal. Molecular Cell Biology, 29, 2092–2104.

    Article  CAS  Google Scholar 

  30. van Noort, M., Meeldijk, J., van der Zee, R., Destree, O., & Clevers, H. (2002). Wnt signaling controls the phosphorylation status of beta-catenin. Journal of Biological Chemistry, 277, 17901–17905.

    Article  PubMed  CAS  Google Scholar 

  31. Fukumoto, S., Hsieh, C. M., Maemura, K., et al. (2001). Akt participation in the Wnt signaling pathway through Dishevelled. Journal of Biological Chemistry, 276, 17479–17483.

    Article  PubMed  CAS  Google Scholar 

  32. Datta, S. R., Brunet, A., & Greenberg, M. E. (1999). Cellular survival: a play in three Akts. Genes & Development, 13, 2905–2927.

    Article  CAS  Google Scholar 

  33. Shaw, M., Cohen, P., & Alessi, D. R. (1997). Further evidence that the inhibition of glycogen synthase kinase-3beta by IGF-1 is mediated by PDK1/PKB-induced phosphorylation of Ser-9 and not by dephosphorylation of Tyr-216. FEBS Letters, 416, 307–311.

    Article  PubMed  CAS  Google Scholar 

  34. Amit, S., Hatzubai, A., Birman, Y., et al. (2002). Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes & Development, 16, 1066–1076.

    Article  CAS  Google Scholar 

  35. Yanagawa, S., Lee, J. S., Matsuda, Y., & Ishimoto, A. (2000). Biochemical characterization of the Drosophila axin protein. FEBS Letters, 474, 189–194.

    Article  PubMed  CAS  Google Scholar 

  36. Liu, C., Li, Y., Semenov, M., et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108, 837–847.

    Article  PubMed  CAS  Google Scholar 

  37. Yost, C., Farr, G. H., 3rd, Pierce, S. B., Ferkey, D. M., Chen, M. M., & Kimelman, D. (1998). GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell, 93, 1031–1041.

    Article  PubMed  CAS  Google Scholar 

  38. Piedra, J., Miravet, S., Castano, J., et al. (2003). p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin Interaction. Molecular Cell Biology, 23, 2287–2297.

    Article  CAS  Google Scholar 

  39. Roura, S., Miravet, S., Piedra, J., Garciade Herreros, A., & Dunach, M. (1999). Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. Journal of Biological Chemistry, 274, 36734–36740.

    Article  PubMed  CAS  Google Scholar 

  40. Okuda, M., Takahashi, M., Suero, J., et al. (1999). Shear stress stimulation of p130(cas) tyrosine phosphorylation requires calcium-dependent c-Src activation. Journal of Biological Chemistry, 274, 26803–26809.

    Article  PubMed  CAS  Google Scholar 

  41. Muller, T., Choidas, A., Reichmann, E., & Ullrich, A. (1999). Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. Journal of Biological Chemistry, 274, 10173–10183.

    Article  PubMed  CAS  Google Scholar 

  42. Papp, S., Zhang, X., Szabo, E., Michalak, M., & Opas, M. (2008). Expression of endoplasmic reticulum chaperones in cardiac development. Open Cardiovascular Medicine Journal, 2, 31–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Szabo, E., Papp, S., & Opas, M. (2007). Differential calreticulin expression affects focal contacts via the calmodulin/CaMK II pathway. Journal of Cellular Physiology, 213, 269–277.

    Article  PubMed  CAS  Google Scholar 

  44. Papp, S., Fadel, M. P., Kim, H., McCulloch, C. A., & Opas, M. (2007). Calreticulin affects fibronectin-based cell-substratum adhesion via the regulation of c-Src activity. Journal of Biological Chemistry, 282, 16585–16598.

    Article  PubMed  CAS  Google Scholar 

  45. Franco, S. J., Rodgers, M. A., Perrin, B. J., et al. (2004). Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biology, 6, 977–983.

    Article  PubMed  CAS  Google Scholar 

  46. Herr, P., & Basler, K. (2012). Porcupine-mediated lipidation is required for Wnt recognition by Wls. Developmental Biology, 361, 392–402.

    Article  PubMed  CAS  Google Scholar 

  47. Doubravska, L., Krausova, M., Gradl, D., et al. (2011). Fatty acid modification of Wnt1 and Wnt3a at serine is prerequisite for lipidation at cysteine and is essential for Wnt signalling. Cellular Signalling, 23, 837–848.

    Article  PubMed  CAS  Google Scholar 

  48. Arnold, S. J., Stappert, J., Bauer, A., Kispert, A., Herrmann, B. G., & Kemler, R. (2000). Brachyury is a target gene of the Wnt/beta-catenin signaling pathway. Mechanisms of Development, 91, 249–258.

    Article  PubMed  CAS  Google Scholar 

  49. Nichols, J., & Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell, 4, 487–492.

    Article  PubMed  CAS  Google Scholar 

  50. Tang, Q. Q., & Lane, M. D. (2012). Adipogenesis: from stem cell to adipocyte. Annual Review of Biochemistry, 81, 715–736.

    Article  PubMed  CAS  Google Scholar 

  51. Nishanian, T. G., Kim, J. S., Foxworth, A., & Waldman, T. (2004). Suppression of tumorigenesis and activation of Wnt signaling by bone morphogenetic protein 4 in human cancer cells. Cancer Biology & Therapy, 3, 667–675.

    Article  CAS  Google Scholar 

  52. Chen, G., Deng, C., & Li, Y. P. (2012). TGF-beta and BMP signaling in osteoblast differentiation and bone formation. International Journal of Biological Sciences, 8, 272–288.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Liao, B., Bao, X., Liu, L., et al. (2011). MicroRNA cluster 302–367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. Journal of Biological Chemistry, 286, 17359–17364.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. ten Berge, D., Kurek, D., Blauwkamp, T., et al. (2011). Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nature Cell Biology, 13, 1070–1075.

    Article  PubMed  CAS  Google Scholar 

  55. Anton, R., Kestler, H. A., & Kuhl, M. (2007). Beta-catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Letters, 581, 5247–5254.

    Article  PubMed  CAS  Google Scholar 

  56. Lyashenko, N., Winter, M., Migliorini, D., Biechele, T., Moon, R. T., & Hartmann, C. (2011). Differential requirement for the dual functions of beta-catenin in embryonic stem cell self-renewal and germ layer formation. Nature Cell Biology, 13, 753–761.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Lynch, J. M., Chilibeck, K., Qui, Y., & Michalak, M. (2006). Assembling pieces of the cardiac puzzle; calreticulin and calcium-dependent pathways in cardiac development, health, and disease. Trends in Cardiovascular Medicine, 16, 65–69.

    Article  PubMed  CAS  Google Scholar 

  58. Mesaeli, N., Nakamura, K., Zvaritch, E., et al. (1999). Calreticulin is essential for cardiac development. Journal of Cell Biology, 144, 857–868.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Christophersen, N. S., & Helin, K. (2010). Epigenetic control of embryonic stem cell fate. Journal of Experimental Medicine, 207, 2287–2295.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Fernando, R. I., Litzinger, M., Trono, P., Hamilton, D. H., Schlom, J., & Palena, C. (2010). The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. Journal of Clinical Investigation, 120, 533–544.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Czyz, J., & Wobus, A. (2001). Embryonic stem cell differentiation: the role of extracellular factors. Differentiation, 68, 167–174.

    Article  PubMed  CAS  Google Scholar 

  62. Mohammad, K. S., Javelaud, D., Fournier, P. G., et al. (2011). TGF-beta-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer Research, 71, 175–184.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Lin, J., Fernandez, I., & Roy, K. (2011). Development of feeder-free culture systems for generation of ckit + sca1+ progenitors from mouse iPS cells. Stem Cell Reviews, 7, 736–747.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Lin, S. L., Chang, D. C., Chang-Lin, S., et al. (2008). Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 14, 2115–2124.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Li, M. A., & He, L. (2012). microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. Bioessays, 34, 670–680.

    Article  PubMed  CAS  Google Scholar 

  66. Card, D. A., Hebbar, P. B., Li, L., et al. (2008). Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Molecular Cell Biology, 28, 6426–6438.

    Article  CAS  Google Scholar 

  67. Kang, H., Louie, J., Weisman, A., et al. (2012). Inhibition of microRNA-302 (miR-302) by bone morphogenetic protein 4 (BMP4) facilitates the BMP signaling pathway. Journal of Biological Chemistry, 287, 38656–38664.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Chang, S. F., Chang, T. K., Peng, H. H., et al. (2009). BMP-4 induction of arrest and differentiation of osteoblast-like cells via p21 CIP1 and p27 KIP1 regulation. Molecular Endocrinology, 23, 1827–1838.

    Article  PubMed  CAS  Google Scholar 

  69. Brautigam, C., Raggioli, A., & Winter, J. (2013). The Wnt/beta-Catenin pathway regulates the expression of the miR-302 cluster in mouse ESCs and P19 cells. PLoS One, 8, e75315.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Evans, A. L., Faial, T., Gilchrist, M. J., et al. (2012). Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. PLoS One, 7, e33346.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (CIHR) (MOP-53050, MOP-15415, MOP-15291). We thank M. Opas, University of Toronto, for advice and help with immunocytochemistry (Fig. 4). We are grateful to Lori Cormack and Virginie Martin for invaluable help with initial experiments, advice, and support at the initial stages of this work. We thank Michel Puceat, Joanna Jung and Daniel Prins for critical reading of the manuscript and for very helpful comments.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Michalak.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groenendyk, J., Michalak, M. Disrupted WNT Signaling in Mouse Embryonic Stem Cells in the Absence of Calreticulin. Stem Cell Rev and Rep 10, 191–206 (2014). https://doi.org/10.1007/s12015-013-9488-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9488-6

Keyword

Navigation