Skip to main content
Log in

Stable Changes in Mesenchymal Stromal Cells from Multiple Myeloma Patients Revealed through Their Responses to Toll-Like Receptor Ligands and Epidermal Growth Factor

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

In human multiple myeloma (MM), the tumor cells exhibit strict dependence on bone marrow (BM) stromal elements. It has been suggested that, in turn, MM cells modify multipotent stromal cells (MSCs), diverting them to support the myeloma. We investigated MM-derived MSCs by comparing their toll-like receptor (TLR) responses to those of MSCs derived from healthy controls. We now report that MM-derived MSCs manifested intact proliferation responses and IL-6 secretion and their adipose and osteogenic differentiation responses to TLR ligands were also similar to those of healthy controls, ranging from augmentation to inhibition. However, MM-derived MSCs were found to be defective in IL-8 secretion and ERK1/2 phosphorylation following TLR-2 activation. Moreover, MM-derived MSCs failed to respond to EGF by elevation of ERK1/2 phosphorylation. The persistence of these changes in extensively cultured MM-derived MSCs, suggests that these cells are stably, if not irreversibly modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bataille, R., & Harousseau, J. L. (1997). Multiple myeloma. The New England Journal of Medicine, 336, 1657–64.

    Article  PubMed  CAS  Google Scholar 

  2. Barille-Nion, S., & Bataille, R. (2003). New insights in myeloma-induced osteolysis. Leukemia & Lymphoma, 44, 1463–7.

    Article  CAS  Google Scholar 

  3. Vidriales, M. B., & Anderson, K. C. (1996). Adhesion of multiple myeloma cells to the bone marrow microenvironment: implications for future therapeutic strategies. Molecular Medicine Today, 2, 425–31.

    Article  PubMed  CAS  Google Scholar 

  4. Witzig, T. E. (1999). The role of adhesion receptors in the pathogenesis of multiple myeloma. Hematology/Oncology Clinics of North America, 13, 1127–43.

    Article  PubMed  CAS  Google Scholar 

  5. Grigorieva, I., Thomas, X., & Epstein, J. (1998). The bone marrow stromal environment is a major factor in myeloma cell resistance to dexamethasone. Experimental Hematology, 26, 597–603.

    PubMed  CAS  Google Scholar 

  6. Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A., & Dalton, W. S. (1999). Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood, 93, 1658–67.

    PubMed  CAS  Google Scholar 

  7. Lacey, D. L., Timms, E., Tan, H. L., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93, 165–76.

    Article  PubMed  CAS  Google Scholar 

  8. Zipori, D. (2009). Biology of stem cells and the molecular basis of the stem state. Humana Pr Inc.

  9. Corre, J., Mahtouk, K., Attal, M., et al. (2007). Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia, 21, 1079–88.

    PubMed  CAS  Google Scholar 

  10. Wallace, S. R., Oken, M. M., Lunetta, K. L., Panoskaltsis-Mortari, A., & Masellis, A. M. (2001). Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer, 91, 1219–30.

    Article  PubMed  CAS  Google Scholar 

  11. Gunn, W. G., Conley, A., Deininger, L., Olson, S. D., Prockop, D. J., & Gregory, C. A. (2006). A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells, 24, 986–91.

    Article  PubMed  CAS  Google Scholar 

  12. Arnulf, B., Lecourt, S., Soulier, J., et al. (2007). Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia, 21, 158–63.

    Article  PubMed  CAS  Google Scholar 

  13. Li, B., Shi, M., Li, J., et al. (2007). Elevated tumor necrosis factor-alpha suppresses TAZ expression and impairs osteogenic potential of Flk-1(+) mesenchymal stem cells in patients with multiple myeloma. Stem Cells Dev.

  14. Garderet, L., Mazurier, C., Chapel, A., et al. (2007). Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leukemia & Lymphoma, 48, 2032–41.

    Article  CAS  Google Scholar 

  15. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–7.

    Article  PubMed  CAS  Google Scholar 

  16. Owen, M. (1988). Marrow stromal stem cells. Journal of Cell Science. Supplement, 10, 63–76.

    PubMed  CAS  Google Scholar 

  17. Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2, 83–92.

    PubMed  CAS  Google Scholar 

  18. Benayahu, D., Gurevitch, O., Zipori, D., & Wientroub, S. (1994). Bone formation by marrow osteogenic cells (MBA-15) is not accompanied by osteoclastogenesis and generation of hematopoietic supportive microenvironment. Journal of Bone and Mineral Research, 9, 1107–14.

    Article  PubMed  CAS  Google Scholar 

  19. Pevsner-Fischer, M., & Zipori, D. (2009). Environmental signals regulating mesenchymal progenitor cell growth and differentiation. In: Rajasekhar VKV, Mohan C, (ed.) Regulatory Networks in Stem Cells. 1st ed: Humana Press; pp 175–184.

  20. Pevsner-Fischer, M., Morad, V., Cohen-Sfady, M., et al. (2007). Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood, 109, 1422–32.

    Article  PubMed  CAS  Google Scholar 

  21. Hwa Cho, H., Bae, Y. C., & Jung, J. S. (2006). Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells, 24, 2744–2752.

    Article  PubMed  Google Scholar 

  22. Liotta, F., Angeli, R., Cosmi, L., et al. (2007). TLR3 and TLR4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing notch signalling. Stem Cells.

  23. Lombardo, E., DelaRosa, O., Mancheno-Corvo, P., Menta, R., Ramirez, C., & Buscher, D. (2009). Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Engineering. Part A, 15, 1579–89.

    Article  PubMed  CAS  Google Scholar 

  24. Mo, I. F., Yip, K. H., Chan, W. K., Law, H. K., Lau, Y. L., & Chan, G. C. (2008). Prolonged exposure to bacterial toxins downregulated expression of toll-like receptors in mesenchymal stromal cell-derived osteoprogenitors. BMC Cell Biology, 9, 52.

    Article  PubMed  Google Scholar 

  25. Tomchuck, S. L., Zwezdaryk, K. J., Coffelt, S. B., Waterman R. S., Danka, E. S., & Scandurro, A. B. (2007). Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells.

  26. van den Berk, L. C., Jansen, B. J., Siebers-Vermeulen, K. G., et al. (2009) Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med.

  27. Waterman, R. S., Tomchuck, S. L., Henkle, S. L., & Betancourt, A. M. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One;5:e10088.

  28. Yu, S., Cho, H. H., Joo, H. J., Bae, Y. C., & Jung, J. S. (2008). Role of MyD88 in TLR agonist-induced functional alterations of human adipose tissue-derived mesenchymal stem cells. Molecular and Cellular Biochemistry, 317, 143–50.

    Article  PubMed  CAS  Google Scholar 

  29. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.

    Article  PubMed  CAS  Google Scholar 

  30. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–7.

    Article  PubMed  CAS  Google Scholar 

  31. Brat, D. J., Bellail, A. C., & Van Meir, E. G. (2005). The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology, 7, 122–33.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao, Y., Yokota, K., Ayada, K., et al. (2007). Helicobacter pylori heat-shock protein 60 induces interleukin-8 via a Toll-like receptor (TLR)2 and mitogen-activated protein (MAP) kinase pathway in human monocytes. Journal of Medical Microbiology, 56, 154–64.

    Article  PubMed  CAS  Google Scholar 

  33. Banerjee, A., & Gerondakis, S. (2007). Coordinating TLR-activated signaling pathways in cells of the immune system. Immunology and Cell Biology, 85, 420–4.

    Article  PubMed  CAS  Google Scholar 

  34. Hoffmann, E., Dittrich-Breiholz, O., Holtmann, H., & Kracht, M. (2002). Multiple control of interleukin-8 gene expression. Journal of Leukocyte Biology, 72, 847–55.

    PubMed  CAS  Google Scholar 

  35. Tamama, K., Fan, V. H., Griffith, L. G., Blair, H. C., & Wells, A. (2006). Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells, 24, 686–95.

    Article  PubMed  CAS  Google Scholar 

  36. Wells, A. (1999). EGF receptor. The International Journal of Biochemistry & Cell Biology, 31, 637–43.

    Article  CAS  Google Scholar 

  37. Garayoa, M., Garcia, J. L., Santamaria, C., et al. (2009). Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia.

  38. Krampera, M., Pasini, A., Rigo, A., et al. (2005). HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood, 106, 59–66.

    Article  PubMed  CAS  Google Scholar 

  39. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M., & Mann, M. (2005). Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science, 308, 1472–7.

    Article  PubMed  CAS  Google Scholar 

  40. Satomura, K., Derubeis, A. R., Fedarko, N. S., et al. (1998). Receptor tyrosine kinase expression in human bone marrow stromal cells. Journal of Cellular Physiology, 177, 426–38.

    Article  PubMed  CAS  Google Scholar 

  41. Tamama, K., Kawasaki, H., & Wells, A. (2010). Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. Journal of Biomedicine and Biotechnology, 2010, 795385.

    Article  PubMed  Google Scholar 

  42. Pevsner-Fischer, M. S. L., & Zipori, D. (2011). The origins of mesenchymal stromal cell heterogeneity. Stem Cell Reviews and Reports.

  43. Sternberg, D., Peled, A., Shezen, E., et al. (1996). Control of stroma-dependent hematopoiesis by basic fibroblast growth factor: stromal phenotypic plasticity and modified myelopoietic functions. Cytokines and Molecular Therapy, 2, 29–38.

    PubMed  CAS  Google Scholar 

  44. Giuliani, N., Colla, S., Morandi, F., et al. (2005). Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood, 106, 2472–83.

    Article  PubMed  CAS  Google Scholar 

  45. Callander, N. S., & Roodman, G. D. (2001). Myeloma bone disease. Seminars in Hematology, 38, 276–85.

    Article  PubMed  CAS  Google Scholar 

  46. Lauta, V. M. (2003). A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer, 97, 2440–52.

    Article  PubMed  CAS  Google Scholar 

  47. Hiruma, Y., Honjo, T., Jelinek, D. F., et al. (2009). Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation. Blood, 113, 4894–902.

    Article  PubMed  CAS  Google Scholar 

  48. Beutler, B. (2004). Inferences, questions and possibilities in Toll-like receptor signalling. Nature, 430, 257–63.

    Article  PubMed  CAS  Google Scholar 

  49. Fibbe, W. E., Pruijt, J. F., Velders, G. A., et al. (1999). Biology of IL-8-induced stem cell mobilization. Annals of the New York Academy of Sciences, 872, 71–82.

    Article  PubMed  CAS  Google Scholar 

  50. Aggarwal, R., Ghobrial, I. M., & Roodman, G. D. (2006). Chemokines in multiple myeloma. Experimental Hematology, 34, 1289–95.

    Article  PubMed  CAS  Google Scholar 

  51. Jaiswal, R. K., Jaiswal, N., Bruder, S. P., Mbalaviele, G., Marshak, D. R., & Pittenger, M. F. (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. Journal of Biological Chemistry, 275, 9645–52.

    Article  PubMed  CAS  Google Scholar 

  52. Todoerti, K., Lisignoli, G., Storti, P., et al. (2010). Distinct transcriptional profiles characterize bone microenvironment mesenchymal cells rather than osteoblasts in relationship with multiple myeloma bone disease. Experimental Hematology, 38, 141–53.

    Article  PubMed  CAS  Google Scholar 

  53. Podar, K., Chauhan, D., & Anderson, K. C. (2009). Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia, 23, 10–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Helen and Martin Kimmel Institute for Stem Cell Research and the M.D. Moross Institute for Cancer Research, at the Weizmann Institute, the Charles and David Wolfson Charitable Trust, grant No. 2003117 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel and by grants from the Gabrielle Rich Center for Transplantation Biology. We gratefully acknowledge support for this project provided by a grant from the Legacy Heritage Fund of New York.

DZ is an incumbent of the Joe and Celia Weinstein Professorial Chair at the Weizmann Institute of Science. The authors are indebted to Ms. Varda Segal for her excellent technical assistance. We thank Prof. Edna Schechtman and Dr. Yisrael Parmet for assistance with the statistical analysis and to Prof. Roni Seger for his help and advice.

Conflicts of interest

The authors declare no potential conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Zipori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pevsner-Fischer, M., Levin, S., Hammer-Topaz, T. et al. Stable Changes in Mesenchymal Stromal Cells from Multiple Myeloma Patients Revealed through Their Responses to Toll-Like Receptor Ligands and Epidermal Growth Factor. Stem Cell Rev and Rep 8, 343–354 (2012). https://doi.org/10.1007/s12015-011-9310-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9310-2

Keywords

Navigation