Skip to main content
Log in

Stem Cell Competition for Niche Occupancy: Emerging Themes and Mechanisms

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Tissue-specific adult stem cells are responsible for generating a range of various differentiated cells during their life time; these cells are intimately associated with niche for maintenance and function. Recent studies of germline stem cell niches in Drosophila gonad suggest that stem cells within a niche constantly compete with each other for niche occupancy. Competition within a niche occurs between same type of stem cells as well as different types. In both cases, cell adhesion molecules are critical in mediating the competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li, L., & Xie, T. (2005). Stem cell niche: structure and function. Annual Review of Cell and Developmental Biology, 21, 605–31.

    Article  PubMed  CAS  Google Scholar 

  2. Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611.

    Article  PubMed  CAS  Google Scholar 

  3. Johnston, L. A. (2009). Competitive interactions between cells: death, growth, and geography. Science, 324(5935), 1679–82.

    Article  PubMed  CAS  Google Scholar 

  4. Moreno, E., Basler, K., & Morata, G. (2002). Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature, 416(6882), 755–9.

    Article  PubMed  CAS  Google Scholar 

  5. Xie, T., & Spradling, A. C. (2000). A niche maintaining germ line stem cells in the Drosophila ovary. Science, 290(5490), 328–30.

    Article  PubMed  CAS  Google Scholar 

  6. Margolis, J., & Spradling, A. (1995). Identification and behavior of epithelial stem cells in the Drosophila ovary. Development, 121(11), 3797–807.

    PubMed  CAS  Google Scholar 

  7. Zhao, R., et al. (2008). Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila. Aging Cell, 7(3), 344–54.

    Article  PubMed  CAS  Google Scholar 

  8. Jin, Z., et al. (2008). Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the Drosophila ovary. Cell Stem Cell, 2(1), 39–49.

    Article  PubMed  CAS  Google Scholar 

  9. Song, X., et al. (2004). Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development, 131(6), 1353–64.

    Article  PubMed  CAS  Google Scholar 

  10. Xie, T., & Spradling, A. C. (1998). decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell, 94(2), 251–60.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, D., & McKearin, D. (2003). Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Current Biology, 13(20), 1786–91.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, D., & McKearin, D. M. (2003). A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell. Development, 130(6), 1159–70.

    Article  PubMed  CAS  Google Scholar 

  13. Lavoie, C. A., Ohlstein, B., & McKearin, D. M. (1999). Localization and function of Bam protein require the benign gonial cell neoplasm gene product. Developmental Biology, 212(2), 405–13.

    Article  PubMed  CAS  Google Scholar 

  14. Song, X., et al. (2002). Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science, 296(5574), 1855–7.

    Article  PubMed  CAS  Google Scholar 

  15. Shen, R., et al. (2009). eIF4A controls germline stem cell self-renewal by directly inhibiting BAM function in the Drosophila ovary. Proceedings of the National Academy of Sciences of theUnited States of America, 106(28), 11623–8.

    Article  Google Scholar 

  16. Yamashita, Y. M. (2008). Selfish stem cells compete with each other. Cell Stem Cell, 2(1), 3–4.

    Article  PubMed  CAS  Google Scholar 

  17. Brawley, C., & Matunis, E. (2004). Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science, 304(5675), 1331–4.

    Article  PubMed  CAS  Google Scholar 

  18. Kai, T., & Spradling, A. (2004). Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature, 428(6982), 564–9.

    Article  PubMed  CAS  Google Scholar 

  19. Sheng, X. R., Brawley, C. M., & Matunis, E. L. (2009). Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the Drosophila testis. Cell Stem Cell, 5(2), 191–203.

    Article  PubMed  CAS  Google Scholar 

  20. Cheng, J., et al. (2008). Centrosome misorientation reduces stem cell division during ageing. Nature, 456(7222), 599–604.

    Article  PubMed  CAS  Google Scholar 

  21. Rhiner, C., et al. (2009). Persistent competition among stem cells and their daughters in the Drosophila ovary germline niche. Development, 136(6), 995–1006.

    Article  PubMed  CAS  Google Scholar 

  22. Moreno, E., & Basler, K. (2004). dMyc transforms cells into super-competitors. Cell, 117(1), 117–29.

    Article  PubMed  CAS  Google Scholar 

  23. Fuller, M. T. (1993). Spermatogenesis. In M. Bate & A. Martinez Arias (Eds.), The development of Drosophila (pp. 71–147). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  24. Kiger, A. A., et al. (2001). Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science, 294(5551), 2542–5.

    Article  PubMed  CAS  Google Scholar 

  25. Leatherman, J. L., & Dinardo, S. (2008). Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell, 3(1), 44–54.

    Article  PubMed  CAS  Google Scholar 

  26. Tulina, N., & Matunis, E. (2001). Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science, 294(5551), 2546–9.

    Article  PubMed  CAS  Google Scholar 

  27. Issigonis, M., et al. (2009). JAK-STAT signal inhibition regulates competition in the Drosophila testis stem cell niche. Science, 326(5949), 153–6.

    Article  PubMed  CAS  Google Scholar 

  28. Voog, J., D’Alterio, C., & Jones, D. L. (2008). Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature, 454(7208), 1132–6.

    Article  PubMed  CAS  Google Scholar 

  29. Yamashita, Y. M., Jones, D. L., & Fuller, M. T. (2003). Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science, 301(5639), 1547–50.

    Article  PubMed  CAS  Google Scholar 

  30. Tanentzapf, G., et al. (2007). Integrin-dependent anchoring of a stem-cell niche. Nature Cell Biology, 9(12), 1413–8.

    Article  PubMed  CAS  Google Scholar 

  31. Delon, I., & Brown, N. H. (2007). Integrins and the actin cytoskeleton. Current Opinion in Cell Biology, 19(1), 43–50.

    Article  PubMed  CAS  Google Scholar 

  32. Humphries, J. D., Byron, A., & Humphries, M. J. (2006). Integrin ligands at a glance. Journal of Cell Science, 119(Pt 19), 3901–3.

    Article  PubMed  CAS  Google Scholar 

  33. Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673–87.

    Article  PubMed  CAS  Google Scholar 

  34. Xi, R. (2009). Anchoring stem cells in the niche by cell adhesion molecules. Cell Adh Migr, 3(4), 396–401.

    Google Scholar 

  35. Takai, Y., et al. (2008). Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nature Reviews Molecular Cell Biology, 9(8), 603–15.

    Article  PubMed  CAS  Google Scholar 

  36. Tran, J., Brenner, T. J., & DiNardo, S. (2000). Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature, 407(6805), 754–7.

    Article  PubMed  CAS  Google Scholar 

  37. Kiger, A. A., White-Cooper, H., & Fuller, M. T. (2000). Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature, 407(6805), 750–4.

    Article  PubMed  CAS  Google Scholar 

  38. Callus, B. A., & Mathey-Prevot, B. (2002). SOCS36E, a novel Drosophila SOCS protein, suppresses JAK/STAT and EGF-R signalling in the imaginal wing disc. Oncogene, 21(31), 4812–21.

    Article  PubMed  CAS  Google Scholar 

  39. Bhattacharya, D., Ehrlich, L. I., & Weissman, I. L. (2008). Space-time considerations for hematopoietic stem cell transplantation. European Journal of Immunology, 38(8), 2060–7.

    Article  PubMed  CAS  Google Scholar 

  40. Czechowicz, A., et al. (2007). Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science, 318(5854), 1296–9.

    Article  PubMed  CAS  Google Scholar 

  41. Dick, J. E. (2008). Stem cell concepts renew cancer research. Blood, 112(13), 4793–807.

    Article  PubMed  CAS  Google Scholar 

  42. Warner, J. K., et al. (2004). Concepts of human leukemic development. Oncogene, 23(43), 7164–77.

    Article  PubMed  CAS  Google Scholar 

  43. Nilsson, L., et al. (2002). Involvement and functional impairment of the CD34(+)CD38(−)Thy-1(+) hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood, 100(1), 259–67.

    PubMed  CAS  Google Scholar 

  44. Nilsson, L., et al. (2000). Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood, 96(6), 2012–21.

    PubMed  CAS  Google Scholar 

  45. Jamieson, C. H., et al. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New England Journal of Medicine, 351(7), 657–67.

    Article  PubMed  CAS  Google Scholar 

  46. Castor, A., et al. (2005). Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Natural Medicines, 11(6), 630–7.

    Article  CAS  Google Scholar 

  47. Blanpain, C., & Fuchs, E. (2009). Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Reviews Molecular Cell Biology, 10(3), 207–17.

    Article  PubMed  CAS  Google Scholar 

  48. Blanpain, C., et al. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 118(5), 635–48.

    Article  PubMed  CAS  Google Scholar 

  49. Nishimura, E. K., Granter, S. R., & Fisher, D. E. (2005). Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science, 307(5710), 720–4.

    Article  PubMed  CAS  Google Scholar 

  50. Nishimura, E. K., et al. (2002). Dominant role of the niche in melanocyte stem-cell fate determination. Nature, 416(6883), 854–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Erika Matunis and Valentina Greco for helpful discussions, anonymous reviewers and members of the Xi laboratory for helpful comments, Ning Yang for the illustrations, and Si Qi Wang for help with manuscript preparation. Research in our laboratory is supported by the Chinese Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongwen Xi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, R., Xi, R. Stem Cell Competition for Niche Occupancy: Emerging Themes and Mechanisms. Stem Cell Rev and Rep 6, 345–350 (2010). https://doi.org/10.1007/s12015-010-9128-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9128-3

Keywords

Navigation