Skip to main content
Log in

Laurdan Monitors Different Lipids Content in Eukaryotic Membrane During Embryonic Neural Development

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We describe a method based on fluorescence-lifetime imaging microscopy (FLIM) to assess the fluidity of various membranes in neuronal cells at different stages of development [day 12 (E12) and day 16 (E16) of gestation]. For the FLIM measurements, we use the Laurdan probe which is commonly used to assess membrane water penetration in model and in biological membranes using spectral information. Using the FLIM approach, we build a fluidity scale based on calibration with model systems of different lipid compositions. In neuronal cells, we found a marked difference in fluidity between the internal membranes and the plasma membrane, being the plasma membrane the less fluid. However, we found no significant differences between the two cell groups, E12 and E16. Comparison with NIH3T3 cells shows that the plasma membranes of E12 and E16 cells are significantly more fluid than the plasma membrane of the cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Los, D. A., Mironov, K. S., & Allakhverdiev, S. I. (2013). Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynthesis research, 116(2–3), 489–509.

    Article  PubMed  CAS  Google Scholar 

  2. Wiśniewska, A., Draus, J., & Subczynski, W. K. (2003). Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Cellular & Molecular Biology Letters, 8(1), 147–159.

    Google Scholar 

  3. Wang, T. Y., & Silvius, J. R. (2003). Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophysical Journal, 84(1), 367–378.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Lin, C., Wang, L. H., Fan, T. Y., & Kuo, F. W. (2012). Lipid content and composition during the oocyte development of two gorgonian coral species in relation to low temperature preservation. PLoS One, 7(7), e38689.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Marguet, D., Lenne, P. F., Rigneault, H., & He, H. T. (2006). Dynamics in the plasma membrane: How to combine fluidity and order. EMBO Journal, 25(15), 3446–3457.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Weeks, G., & Herring, F. G. (1980). The lipid composition and membrane fluidity of Dictyostelium discoideum plasma membranes at various stages during differentiation. Journal of Lipid Research, 21(6), 681–686.

    PubMed  CAS  Google Scholar 

  7. Nozawa, Y., Kasai, R., Kameyama, Y., & Ohki, K. (1980). Age-dependent modifications in membrane lipids: Lipid composition, fluidity and palmitoyl-CoA desaturase in Tetrahymena membranes. Biochimica et Biophysica Acta, 599(1), 232–245.

    Article  PubMed  CAS  Google Scholar 

  8. Quinn, P. J., & Chapman, D. (1980). The dynamics of membrane structure. CRC Critical Reviews In Biochemistry, 8(1), 1–117. Review.

    Article  PubMed  CAS  Google Scholar 

  9. Hitzemann, R. J., & Johnson, D. A. (1983). Developmental changes in synaptic membrane lipid composition and fluidity. Neurochemical Research, 8(2), 121–131.

    Article  PubMed  CAS  Google Scholar 

  10. Hashimoto, M., Hossain, S., & Masumura, S. (1999). Effect of aging on plasma membrane fluidity of rat aortic endothelial cells. Experimental Gerontology, 34(5), 687–698.

    Article  PubMed  CAS  Google Scholar 

  11. Maurya, S. R., Chaturvedi, D., & Mahalakshmi, R. (2013). Modulating lipid dynamics and membrane fluidity to drive rapid folding of a transmembrane barrel. Scientific Reports, 3, 1989.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bakht, O., Pathak, P., & London, E. (2007). Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): Identification of multiple raft-stabilization mechanisms. Biophysical Journal, 93(12), 4307–4318.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Fan, J., Sammalkorpi, M., & Haataja, M. (2010). Lipid microdomains: structural correlations, fluctuations, and formation mechanisms. Physical Review Letters, 104(11), 118101.

    Article  PubMed  Google Scholar 

  14. Martinez-Seara, H., Róg, T., Pasenkiewicz-Gierula, M., Vattulainen, I., Karttunen, M., & Reigada, R. (2008). Interplay of unsaturated phospholipids and cholesterol in membranes: Effect of the double-bond position. Biophysical Journal, 7, 3295–3305.

    Article  Google Scholar 

  15. Ayuyan, A. G., & Cohen, F. S. (2008). Raft composition at physiological temperature and pH in the absence of detergents. Biophysical Journal, 94(7), 2654–2666.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Sengupta, P., Baird, B., & Holowka, D. (2007). Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Seminars in Cell & Developmental Biology, 5, 583–590. Review.

    Article  Google Scholar 

  17. Niemelä, P. S., Ollila, S., Hyvönen, M. T., Karttunen, M., & Vattulainen, I. (2007). Assessing the nature of lipid raft membranes. PLoS Computational Biology, 3(2), e34.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gallegos, A. M., Storey, S. M., Kier, A. B., Schroeder, F., & Ball, J. M. (2006). Structure and cholesterol dynamics of caveolae/raft and non raft plasma membrane domains. Biochemistry, 45(39), 12100–12116.

    Article  PubMed  CAS  Google Scholar 

  19. Wassall, S. R., Brzustowicz, M. R., Shaikh, S. R., Cherezov, V., Caffrey, M., & Stillwell, W. (2004). Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation. Chemistry and Physics of Lipids, 132(1), 79–88.

    PubMed  CAS  Google Scholar 

  20. Kusumi, A., & Suzuki, K. (2005). Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochimica et Biophysica Acta, 1746(3), 234–251. Review.

    Article  PubMed  CAS  Google Scholar 

  21. Jasmin, J. F., Yang, M., Iacovitti, L., & Lisanti, M. P. (2009). Genetic ablation of caveolin-1 increases neural stem cell proliferation in the subventricular zone (SVZ) of the adult mouse brain. Cell Cycle, 8, 3978–3983.

    Article  PubMed  CAS  Google Scholar 

  22. Fields, R. D., Black, J. A., & Waxman, S. G. (1987). Filipin-cholesterol binding in CNS axons prior to myelination: Evidence for microheterogeneity in premyelinated axolemma. Brain Research, 404, 21–32.

    Article  PubMed  CAS  Google Scholar 

  23. Yanagisawa, M., Nakamura, K., & Taga, T. (2005). Glycosphingolipid synthesis inhibitor represses cytokine-induced activation of the Ras-MAPK pathway in embryonic neural precursor cells. Journal of Biochemistry, 138, 285–291.

    Article  PubMed  CAS  Google Scholar 

  24. Suetake, K., Liour, S. S., Tencomnao, T., & Yu, R. K. (2003). Expression of gangliosides in an immortalized neural progenitor/stem cell line. Journal of Neuroscience Research, 74, 769–776.

    Article  PubMed  CAS  Google Scholar 

  25. Yu, R. K., Macala, L. J., Taki, T., Weinfield, H. M., & Yu, F. S. (1988). Developmental changes in ganglioside composition and synthesis in embryonic rat brain. Journal of Neurochemistry, 50, 1825–1829.

    Article  PubMed  CAS  Google Scholar 

  26. Yu, R. K., Nakatani, Y., & Yanagisawa, M. (2009). The role of glycosphingolipid metabolism in the developing brain. Journal of Lipid Research, 50, 440–445.

    Article  Google Scholar 

  27. Barenholz, Y. (2002). Cholesterol and other membrane active sterols: From membrane evolution to “rafts”. Progress in Lipid Research, 41(1), 1–5. Review.

    Article  PubMed  CAS  Google Scholar 

  28. Hla, T., Lee, M. J., Ancellin, N., Paik, J. H., & Kluk, M. J. (2001). Lysophospholipids–receptor revelations. Science, 294, 1875–1878.

    Article  PubMed  CAS  Google Scholar 

  29. Radeff-Huang, J., Seasholtz, T. M., Matteo, R. G., & Brown, J. H. (2004). G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. Journal of Cellular Biochemistry, 92, 949–966.

    Article  PubMed  CAS  Google Scholar 

  30. Mukhopadhyay, A., Saddoughi, SA., Song, P., Sultan, I., Ponnusamy, S., Senkal, CE., Snook, CF., Arnold, HK., Sears, RC., Hannun, YA., & Ogretmen, B. (2008). Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. The FASEB Journal.

  31. Basu, S., Bayoumy, S., Zhang, Y., Lozano, J., & Kolesnick, R. (1998). BAD enables ceramide to signal apoptosis via Ras and Raf-1. Journal of Biological Chemistry, 273, 30419–30426.

    Article  PubMed  CAS  Google Scholar 

  32. Yin, X., Zafrullah, M., Lee, H., Haimovitz-Friedman, A., Fuks, Z., & Kolesnick, R. (2009). A ceramide-binding C1 domain mediates kinase suppressor of ras membrane translocation. Cellular Physiology and Biochemistry, 24, 219–230.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Bourbon, N. A., Yun, J., & Kester, M. (2000). Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. Journal of Biological Chemistry, 275, 35617–35623.

    Article  PubMed  CAS  Google Scholar 

  34. Krishna, S., & Zhong, X. P. (2013). Regulation of lipid signaling by diacylglycerol kinases during T cell development and function. Frontiers in Immunology, 4, 178.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Hirabayashi, Y., Hirota, M., Suzuki, Y., Matsumoto, M., Obata, K., & Ando, S. (1989). Developmentally expressed O-acetyl ganglioside GT3 in fetal rat cerebral cortex. Neuroscience Letters, 106, 193–198.

    Article  PubMed  CAS  Google Scholar 

  36. Yu, R. K. (1994). Development regulation of ganglioside metabolism. Progress in Brain Research, 101, 31–44. Review.

    Article  PubMed  CAS  Google Scholar 

  37. Rösner, H., al-Aqtum, M., & Rahmann, H. (1992). Gangliosides and neuronal differentiation. Neurochemistry International, 20(3), 339–351.

    Article  PubMed  Google Scholar 

  38. Kotani, M., Terashima, T., & Tai, T. (1995). Developmental changes of ganglioside expressions in postnatal rat cerebellar cortex. Brain Research, 700(1–2), 40–58.

    Article  PubMed  CAS  Google Scholar 

  39. Letinić, K., Heffer-Lauc, M., Rosner, H., & Kostović, I. (1998). C-pathway polysialogangliosides are transiently expressed in the human cerebrum during fetal development. Neuroscience, 86(1), 1–5.

    Article  PubMed  Google Scholar 

  40. Liour, S. S., Kapitonov, D., & Yu, R. K. (2000). Expression of gangliosides in neuronal development of P19 embryonal carcinoma stem cells. Journal of Neuroscience Research, 62(3), 363–373.

    Article  PubMed  CAS  Google Scholar 

  41. Giménez, C. (1998). Composition and structure of the neuronal membrane: Molecular basis of its physiology and pathology. Revista de Neurologia, 26(150), 232–239. Review.

    PubMed  Google Scholar 

  42. Chen, L., & Khillan, J. S. (2010). A novel signaling by vitamin A/retinol promotes self renewal of mouse embryonic stem cells by activating PI3 K/Akt signaling pathway via insulin-like growth factor-1 receptor. Stem Cells, 28, 57–63.

    Article  PubMed  CAS  Google Scholar 

  43. Lewis, P. M., Dunn, M. P., McMahon, J. A., Logan, M., Martin, J. F., St-Jacques, B., et al. (2001). Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell, 105, 599–612.

    Article  PubMed  CAS  Google Scholar 

  44. Lee, M. Y., Ryu, J. M., Lee, S. H., Park, J. H., & Han, H. J. (2010). Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. Journal of Lipid Research, 51, 2082–2089.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Meyer zu Heringdorf, D., & Jakobs, K. H. (2007). Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochimica et Biophysica Acta, 1768, 923–940.

    Article  PubMed  CAS  Google Scholar 

  46. Gardell, S. E., Dubin, A. E., & Chun, J. (2006). Emerging medicinal roles for lysophospholipid signaling. Trends in Molecular Medicine, 12, 65–75.

    Article  PubMed  CAS  Google Scholar 

  47. Hla, T., Lee, M. J., Ancellin, N., Thangada, S., Liu, C. H., Kluk, M., et al. (2000). Sphingosine-1-phosphate signaling via the EDG-1 family of G-protein-coupled receptors. Annals of the New York Academy of Sciences, 905, 16–24.

    Article  PubMed  CAS  Google Scholar 

  48. Okudaira, S., Yukiura, H., & Aoki, J. (2010). Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie, 92, 698–706.

    Article  PubMed  CAS  Google Scholar 

  49. Golfetto, O., Hinde, E., & Gratton, E. (2013). Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophysical Journal, 104(6), 1238–1247.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Hofstetter, S., Denter, C., Winter, R., McMullen, L. M., & Gänzle, M. G. (2012). Use of the fluorescent probe LAURDAN to label and measure inner membrane fluidity of endospores of Clostridium spp. Journal of Microbiol Methods, 91(1), 93–100.

    Article  CAS  Google Scholar 

  51. Sanchez, S. A., Tricerri, M. A., & Gratton, E. (2012). Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proceedings of the National Academy of Sciences USA, 109(19), 7314–7319.

    Article  CAS  Google Scholar 

  52. Ionescu, D., & Ganea, C. (2012). A study of quercetin effects on phospholipid membranes containing cholesterol using Laurdan fluorescence. European Biophysics Journal, 41(3), 307–318.

    Article  CAS  Google Scholar 

  53. Weber, P., Wagner, M., & Schneckenburger, H. (2010). Fluorescence imaging of membrane dynamics in living cells. Journal of Biomedial Optics, 15(4), 046017.

    Article  Google Scholar 

  54. Dodes Traian, M. M., González Flecha, F. L., & Levi, V. (2012). Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. Journal of Lipid Research, 53(3), 609–616.

    Article  PubMed  PubMed Central  Google Scholar 

  55. M’Baye, G., Mély, Y., Duportail, G., & Klymchenko, A. S. (2008). Liquid ordered and gel phases of lipid bilayers: Fluorescent probes reveal close fluidity but different hydration. Biophysical Journal, 3, 1217–1225.

    Article  Google Scholar 

  56. Kahn, E., Baarine, M., Dauphin, A., Ragot, K., Tissot, N., Seguin, A., et al. (2011). Impact of 7-ketocholesterol and very long chain fatty acids on oligodendrocyte lipid membrane organization: evaluation via LAURDAN and FAMIS spectral image analysis. Cytometry Part A, 79(4), 293–305.

    Article  Google Scholar 

  57. Lúcio, A. D., Vequi-Suplicy, C. C., Fernandez, R. M., & Lamy, M. T. (2010). Laurdan spectrum decomposition as a tool for the analysis of surface bilayer structure and polarity: A study with DMPG, peptides and cholesterol. Journal of fluorescence, 20(2), 473–482.

    Article  PubMed  Google Scholar 

  58. Antollini, S. S., & Barrantes, F. J. (2007). Laurdan studies of membrane lipid-nicotinic acetylcholine receptor protein interactions. Methods in Molecular Biology, 400, 531–542. Review.

    Article  PubMed  CAS  Google Scholar 

  59. De Vequi-Suplicy, C. C., Benatti, C. R., & Lamy, M. T. (2006). Laurdan in fluid bilayers: Position and structural sensitivity. Journal of fluorescence, 16(3), 431–439.

    Article  PubMed  CAS  Google Scholar 

  60. Picardi, M. V., Cruz, A., Orellana, G., & Pérez-Gil, J. (2011). Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN. Biochimica et Biophysica Acta, 1808(3), 696–705. gruppo 10.

    Article  PubMed  CAS  Google Scholar 

  61. Kim, H. M., Choo, H. J., Jung, S. Y., Ko, Y. G., Park, W. H., Jeon, S. J., et al. (2007). A two-photon fluorescent probe for lipid raft imaging: C-laurdan. ChemBioChem, 8(5), 553–559.

    Article  PubMed  CAS  Google Scholar 

  62. Vest, R., Wallis, R., Jensen, L. B., Haws, A. C., Callister, J., Brimhall, B., et al. (2006). Use of steady-state laurdan fluorescence to detect changes in liquid ordered phases in human erythrocyte membranes. Journal of Membrane Biology, 211(1), 15–25.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang, Y. L., Frangos, J. A., & Chachisvilis, M. (2006). Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane. Biochemical and Biophysical Research Communications, 347(3), 838–841.

    Article  PubMed  CAS  Google Scholar 

  64. Gaus, K., Zech, T., & Harder, T. (2006). Visualizing membrane microdomains by Laurdan 2-photon microscopy. Molecular Membrane Biology, 23(1), 41–48. Review.

    Article  PubMed  CAS  Google Scholar 

  65. Harris, F. M., Best, K. B., & Bell, J. D. (2002). Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochimica et Biophysica Acta, S1565(1), 123–128.

    Article  Google Scholar 

  66. Digman, M. A., Caiolfa, V. R., Zamai, M., & Gratton, E. (2008). The phasor approach to fluorescence lifetime imaging analysis. Biophysical Journal, 94(2), L14–L16.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Stefl, M., James, N. G., Ross, J. A., & Jameson, D. M. (2011). Applications of phasors to in vitro time-resolved fluorescence measurements. Analytical Biochemistry, 410(1), 62–69.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Zhou, Y., Wu, L., Wang, Q., & Wang, Y. (2011). Global analysis of dynamic fluorescence anisotropy by a polarized phasor approach. Journal of fluorescence, 21(1), 11–15.

    Article  PubMed  Google Scholar 

  69. Fereidouni, F., Bader, A. N., & Gerritsen, H. C. (2012). Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images. Optics Express, 20(12), 12729–12741.

    Article  PubMed  CAS  Google Scholar 

  70. Chen, L. C., Lloyd, W. R, 3rd, Chang, C. W., Sud, D., & Mycek, M. A. (2013). Fluorescence lifetime imaging microscopy for quantitative biological imaging. Methods in Cell Biology, 114, 457–488.

    Article  PubMed  Google Scholar 

  71. van Meer, G. (1998). Lipids of the Golgi membrane. Trends in Cell Biology, 8, 29–33.

    Article  PubMed  Google Scholar 

  72. Hao, M., Lin, S. X., Karylowski, O. J., Wustner, D., McGraw, T. E., & Maxfield, F. R. (2002). Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. Journal of Biological Chemistry, 277, 609–617.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by National Institutes of Health P50 GM076516, 5P41RR003155-27-8 P41 GM103540-27 (EG and OG), and UL1 TR000153 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and the NIH Roadmap for Medical Research. GB and MB acknowledge funds from the Italian Ministry of University and Research MIUR 2012/13 PhD Neurobiology, Department of Chemical Sciences, University of Catania, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Bonaventura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonaventura, G., Barcellona, M.L., Golfetto, O. et al. Laurdan Monitors Different Lipids Content in Eukaryotic Membrane During Embryonic Neural Development. Cell Biochem Biophys 70, 785–794 (2014). https://doi.org/10.1007/s12013-014-9982-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9982-8

Keywords

Navigation