Skip to main content

Advertisement

Log in

Probing Cell Structure Responses Through a Shear and Stretching Mechanical Stimulation Technique

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cells are complex, dynamic systems that respond to various in vivo stimuli including chemical, mechanical, and scaffolding alterations. The influence of mechanics on cells is especially important in physiological areas that dictate what modes of mechanics exist. Complex, multivariate physiological responses can result from multi-factorial, multi-mode mechanics, including tension, compression, or shear stresses. In this study, we present a novel device based on elastomeric materials that allowed us to stimulate NIH 3T3 fibroblasts through uniaxial strip stretching or shear fluid flow. Cell shape and structural response was observed using conventional approaches such as fluorescent microscopy. Cell orientation and actin cytoskeleton alignment along the direction of applied force were observed to occur after an initial 3 h time period for shear fluid flow and static uniaxial strip stretching experiments although these two directions of alignment were oriented orthogonal relative to each other. This response was then followed by an increasingly pronounced cell and actin cytoskeleton alignment parallel to the direction of force after 6, 12, and 24 h, with 85% of the cells aligned along the direction of force after 24 h. These results indicate that our novel device could be implemented to study the effects of multiple modes of mechanical stimulation on living cells while probing their structural response especially with respect to competing directions of alignment and orientation under these different modes of mechanical stimulation. We believe that this will be important in a diversity of fields including cell mechanotransduction, cell–material interactions, biophysics, and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen, C. S., Tan, J., & Tien, J. (2004). Mechanotransduction at cell-matrix and cell-cell contacts. Annual Review of Biomedical Engineering, 6, 275–302.

    Article  PubMed  CAS  Google Scholar 

  2. Georges, P. C., & Janmey, P. (2005). Cell-type specific response to growth on soft materials. Journal of Applied Physiology, 98, 1547–1553.

    Article  PubMed  Google Scholar 

  3. Kumar, S., & LeDuc, P. (2009). Dissecting the molecular basis of the mechanics of living cells. Experimental Mechanics, 49, 11–23.

    Article  CAS  Google Scholar 

  4. Wang, N., & Ingber, D. E. (1994). Control of cytoskeletal mechanics by extracellular matrix, cell shape and mechanical tension. Biophysical Journal, 66, 2181–2189.

    Article  PubMed  CAS  Google Scholar 

  5. Galbraith, C. G., Skalak, R., & Chien, S. (1998). Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motility and the Cytoskeleton, 40, 317–330.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, M., Qin, Y., Liu, J., Tanswell, A. K., & Post, M. (1995). Mechanical strain induces pp60src activation and translocation to cytoskeleton in fetal rat lung cells. The Journal of Biological Chemistry, 271(12), 7066–7071.

    Google Scholar 

  7. Wang, J. H.-C., Thampatty, B. P., Lin, J.-S., & Im, H.-J. (2007). Mechanoregulation of gene expression in fibroblasts. Gene, 391, 1–15.

    Article  PubMed  CAS  Google Scholar 

  8. Liu, M., Tanswell, A. K., & Post, M. (1999). Mechanical-induced signal transduction in lung cells. American Journal of Physiology Lung Cellular and Molecular Physiology, 277, 667–683.

    Google Scholar 

  9. Langevin, H. M., Storch, K. N., Cipolla, M. J., White, S. L., Buttolph, T. R., & Taatjes, D. J. (2006). Fibroblast spreading induced by connective tissue stretch involves intracellular redistribution of α- and β-actin. Histochemistry and Cell Biology, 125, 487–495.

    Article  PubMed  CAS  Google Scholar 

  10. Cunningham, K. S., & Gotlieb, A. I. (2005). The role of shear stress in the pathogenesis of atherosclerosis. Laboratory Investigation, 85, 9–23.

    Article  PubMed  CAS  Google Scholar 

  11. Malek, A. M., & Izumo, S. (1996). The mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. Journal of Cell Science, 109, 713–726.

    PubMed  CAS  Google Scholar 

  12. Yoshigi, M., Clark, E. B., & Yost, H. J. (2003). Quantification of stretch-induced cytoskeletal remodeling in vascular endothelial cells by image processing. Cytometry Part A, 55(A), 109–118.

    Article  Google Scholar 

  13. Lee, J. S. H., Chang, M. I., Tseng, Y., & Wirtz, D. (2005). Cdc42 mediates nucleus movement and mtoc polarization in swiss 3T3 fibroblasts under mechanical shear stress. Molecular Biology of the Cell, 16, 871–880.

    Article  PubMed  CAS  Google Scholar 

  14. Yamaguchi, S., Yamaguchi, M., Yatsuyanagi, E., Yun, S.-S., Nakajima, N., Madri, J. A., et al. (2002). Cyclic strain stimulates early growth response gene product-1 mediated expression of membrane type-1 matrix metalloproteinase in endothelium. Laboratory Investigation, 82(7), 949–956.

    PubMed  CAS  Google Scholar 

  15. LeDuc, P. R., & Robinson, D. N. (2007). Using lessons from cellular and molecular structures for future materials. Advanced Materials, 19, 3761–3770.

    Article  CAS  Google Scholar 

  16. Kaunas, R., Nguyen, P., Usami, S., & Chien, S. (2005). Cooperative effects of rho and mechanical stretch on stress fiber organization. Proceedings of the National Academy of Sciences of the United States of America, 102(44), 15895–15900.

    Article  PubMed  CAS  Google Scholar 

  17. Kanda, K., & Matsuda, T. (1994). Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultures in three-dimensional collagen lattices. Cell Transplantation, 3(6), 481–492.

    PubMed  CAS  Google Scholar 

  18. Raeber, G. P., Lutolf, M. P., & Hubbell, J. A. (2007). Part II: Fibroblasts preferentially migrate in the direction of principal strain. Biomechanics and Modeling in Mechanobiology, 7(3), 215–225.

    Article  PubMed  Google Scholar 

  19. Takuda, K., & Miyairi, H. (1996). Tensile behaviour of fibroblasts cultured in collagen gel. Biomaterials, 17, 1393–1397.

    Article  Google Scholar 

  20. Eastwood, M., McGrouther, D. A., & Brown, R. A. (1998). Fibroblast responses to mechanical forces. Proceedings of the Institution of Mechanical Engineers, 212(H), 85–92.

    Article  CAS  Google Scholar 

  21. Ng, C. P., & Swartz, M. A. (2003). Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. American Journal of Physiology. Heart and Circulatory Physiology, 283, H1771–H1777.

    Google Scholar 

  22. Wang, J. H.-C., Goldschmidt-Clermont, P., Moldovan, N., & Yin, F. C.-P. (2000). Leukotrienes and tyrosine phosporylation mediate stretching-induced actin cytoskeletal remodeling in endothelial cells. Cell Motility and the Cytoskeleton, 46, 137–145.

    Article  PubMed  CAS  Google Scholar 

  23. Brown, X. Q., Ookawa, K., & Wong, J. Y. (2005). Evaluation of polydimethysiloxane scaffolds with physiologically relevant elastic mouli: Interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell reponse. Biomaterials, 25, 3123–3129.

    Article  CAS  Google Scholar 

  24. Gray, D. S., Tien, J., & Chen, C. S. (2003). Repositioning of cells by mechanotaxis on surfaces with micropatterened young’s modulus. Journal of Biomedical Materials Research Part A, 66A(3), 605–614.

    Article  CAS  Google Scholar 

  25. Kubicek, J., Brelsford, S., Ahluwalia, P., & LeDuc, P. R. (2004). Three-dimensional cellular stimulation using networked and constrained membranes with differential elasticity. Langmuir, 20, 11552–11556.

    Article  PubMed  CAS  Google Scholar 

  26. Joshi, S., & Webb, K. (2008). Variation of cyclic strain parameters regulates development of elastic modulus in fibroblasts/substrate constructs. Journal of Orthopaedic Research, 26, 1105–1113.

    Article  PubMed  Google Scholar 

  27. Walker, G. M., Sai, J., Richmond, A., Stremler, M., Chung, C. Y., & Wilkswo, J. P. (2005). Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab on a Chip, 5, 611–618.

    Article  PubMed  CAS  Google Scholar 

  28. Vogel, M., Frake, J., Frank, W., & Schroten, H. (2007). Flow in the well: Computational fluid dynamics is essential in flow chamber construction. Cytotechnology, 55, 41–54.

    Article  PubMed  Google Scholar 

  29. Heilshorn, S. C., DiZio, K. A., Welsh, E. R., & Tirrell, D. A. (2003). Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomaterials, 24, 4245–4252.

    Article  PubMed  CAS  Google Scholar 

  30. Grierson, J. P., & Meldolesi, J. (1995). Shear stress-induced [Ca2+]i transients and oscillations in mouse fibroblasts are mediated by endogenously released atp. The Journal of Biological Chemistry, 270, 4451–4456.

    Article  PubMed  CAS  Google Scholar 

  31. Endlich, N., Kress, K. R., Reiser, J., Uttenweiler, D., Kriz, W., Mundel, P., et al. (2001). Podocytes respond to mechanical stress in vitro. Journal of the American Society of Nephrology, 12, 413–422.

    PubMed  CAS  Google Scholar 

  32. Albuquerque, M. L. C., Waters, C. M., Salva, U., Schnaper, W. H., & Flozak, A. (2000). Shear stress enhances endothelial cell wound closure in vitro. American journal of Physiology. Heart and Circulatory Physiology, 279, H293–H302.

    PubMed  CAS  Google Scholar 

  33. Loesberg, W. A., Walboomers, X. F., van Loon, J. J. W. A., & Jansen, J. A. (2005). The effect of combined cyclic mechanical stretching and microgrooved surface topography on the behavior of fibroblasts. Journal of Biomedical Materials Research, 75(3), 723–732.

    PubMed  CAS  Google Scholar 

  34. Park, S. A., Kim, I. A., Lee, Y. J., Shin, J. W., Kim, C.-R., Kim, J. K., et al. (2006). Biological responses of ligament fibroblasts and gene expression profiling on micropatterned silicone substrates to mechanical simuli. Journal of Bioscience and Bioengineering, 102(5), 402–412.

    Article  PubMed  CAS  Google Scholar 

  35. Kessler, D., Dethlefsen, S., Haase, I., Plomann, M., Hirche, F., Krieg, T., et al. (2001). Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype. The Journal of Biological Chemistry, 276(39), 36575–36585.

    Article  PubMed  CAS  Google Scholar 

  36. Garanich, J. S., Mathura, R. A., Shi, Z. D., & Tarbell, J. M. (2007). Effects of fluid shear stress on adventitial fibroblast migration: Implications for flow-mediated mechanisms of arterializations and intimal hyperplasia. American Journal of Physiology. Heart and Circulatory Physiology, 292, H3128–H3135.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation and the CAREER program, the National Institute of Health, the Office of Naval Research, as well as the Beckman Young Investigators Program (P.R.L.). C.-M. C. was supported in part by a PhD Research Scholarship from Taiwan and the Dowd-ICES Scholarship from Carnegie Mellon University, USA. R. L. S. was supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. LeDuc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steward, R.L., Cheng, CM., Wang, D.L. et al. Probing Cell Structure Responses Through a Shear and Stretching Mechanical Stimulation Technique. Cell Biochem Biophys 56, 115–124 (2010). https://doi.org/10.1007/s12013-009-9075-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9075-2

Keywords

Navigation