Skip to main content

Advertisement

Log in

Effects of Ambient Atmospheric PM2.5, 1-Nitropyrene and 9-Nitroanthracene on DNA Damage and Oxidative Stress in Hearts of Rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Exposure to fine particulate matter (PM2.5) increased the risks of cardiovascular diseases. PM2.5-bound 1-nitropyrene (1-NP) and 9-nitroanthracene (9-NA) are released from the incomplete combustion of fossil fuels and derived from polycyclic aromatic hydrocarbons (PAHs). The toxicities of 1-NP and 9-NA are mainly reflected in their carcinogenicity and mutagenicity. However, studies of PM2.5-bound 1-NP and 9-NA on the cardiac genotoxicity are limited so far. In this study, histopathology, DNA damage, DNA repair-related gene expression, and oxidative stress were investigated in the hearts of male Wistar rats exposed to PM2.5 [1.5 mg/kg body weight (b.w.)] or three different dosages of 1-NP (1.0 × 10− 5, 4.0 × 10− 5, and 1.6 × 10− 4 mg/kg b.w.) or 9-NA (1.3 × 10− 5, 4.0 × 10− 5, and 1.2 × 10− 4 mg/kg b.w.). The results revealed that (1) PM2.5, higher dosages of 1-NP (4.0 × 10− 5 and 1.6 × 10− 4 mg/kg b.w.) and 9-NA (4.0 × 10− 5 and 1.2 × 10− 4 mg/kg b.w.) caused obvious pathological responses and DNA damage (DNA strand breaks, 8-OHdG formation and DNA–protein cross-link), accompanied by increasing OGG1 and GADD153 expression while inhibiting MTH1 and XRCC1 expression in rat hearts. Also, they elevated the hemeoxygenase-1 (HO-1), glutathione S-transferase (GST), and malondialdehyde (MDA) levels and decreased superoxide dismutase (SOD) activity compared with the control. (2) The lowest dosages 1-NP or 9-NA could not cause DNA damage and oxidative stress. (3) At the approximately equivalent dose level, PM2.5-induced DNA damage effects were more obvious than 1-NP or 9-NA along with positive correlation. Taken together, heart DNA damage caused by PM2.5, 1-NP and 9-NA may be mediated partially through influencing the DNA repair capacity and causing oxidative stress, and such negative effects might be related to the genotoxicity PM2.5, 1-NP, and 9-NA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. IARC. (2016). Outdoor air pollution. In Monographs on the evaluation of carcinogenic risks to humans (Vol. 109). Lyon: IARC.

  2. Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermot, A., Zeger, S. L., et al. (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, 295(10), 1127–1134.

    Article  CAS  Google Scholar 

  3. Xu, Q., Wang, S., Guo, Y., Wang, C., Huang, F., Li, X., et al. (2017). Acute exposure to fine particulate matter and cardiovascular hospital emergency room visits in Beijing, China. Environmental Pollution, 220(Pt A), 317–327.

    Article  CAS  Google Scholar 

  4. Thurston, G. D., Burnett, R. T., Turner, M. C., Shi, Y., Krewski, D., Lall, R., et al. (2016). Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Environmental Health Perspectives, 124(6), 785–794.

    Article  CAS  Google Scholar 

  5. Fu, P. P., & Herreno-Saenz, D. (1999). Nitro-polycyclic aromatic hydrocarbons: A class of genotoxic environmental pollutants. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis and Ecotoxicology Reviews, 17, 1–43.

    Google Scholar 

  6. Yang, X., Igarashi, K., Tang, N., Lin, J. M., Wang, W., Kameda, T., et al. (2010). Indirect- and direct-acting mutagenicity of diesel, coal and wood burning-derived particulates and contribution of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Mutation Research, 695, 29–34.

    Article  CAS  Google Scholar 

  7. IARC. (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. In Monographs on the evaluation of carcinogenic risks to humans (Vol. 92). Lyon: IARC.

  8. Wang, W., Jariyasopit, N., Schrlau, J., Jia, Y., Tao, S., Yu, T. W., et al. (2011). Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games. Environmental Science and Technology, 45, 6887–6895.

    Article  CAS  Google Scholar 

  9. Hayakawa, K. (2016). Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Chemical and Pharmaceutical Bulletin (Tokyo), 64, 83–94.

    Article  CAS  Google Scholar 

  10. Jiang, P., Yang, L., Chen, X., Gao, Y., Li, Y., Zhang, J., et al. (2018). Impact of dust storms on NPAHs and OPAHs in PM2.5 in Jinan, China, in spring 2016: Concentrations, health risks, and sources. Aerosol and Air Quality Research, 18, 471–484.

    Article  CAS  Google Scholar 

  11. Lin, Y., Ma, Y., Qiu, X., Li, R., Fang, Y., & Wang, J., et al. (2015). Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM2.5 in Beijing. Journal of Geophysical Research Atmospheres, 120(14), 7219–7228.

    Article  CAS  Google Scholar 

  12. IARC. (1989). Diesel and gasoline engine exhausts and some nitroarenes. In Monographs on the evaluation of carcinogenic risks to humans (Vol. 46). Lyon: IARC.

  13. Andersson, H., Piras, E., Demma, J., Hellman, B., & Brittebo, E. (2009). Low levels of the air pollutant 1-nitropyrene induce DNA damage, increased levels of reactive oxygen species and endoplasmic reticulum stress in human endothelial cells. Toxicology, 262(1), 57–64.

    Article  CAS  Google Scholar 

  14. Wilson, S. J., Miller, M. R., & Newby, D. E. (2018). Effects of diesel exhaust on cardiovascular function and oxidative stress. Antioxidants and Redox Signaling, 28(9), 819–836.

    Article  CAS  Google Scholar 

  15. Miller-Schulze, J. P., Paulsen, M., Kameda, T., Toriba, A., Tang, N., Tamura, K., et al. (2013). Evaluation of urinary metabolites of 1-nitropyrene as biomarkers for exposure to diesel exhaust in taxi drivers of Shenyang, China. Journal of Exposure Science and Environmental Epidemiology, 23(2), 170–175.

    Article  CAS  Google Scholar 

  16. Zhang, Y., Li, R., Fang, J., Wang, C., & Cai, Z. (2018). Simultaneous determination of eighteen nitro-polyaromatic hydrocarbons in PM2.5 by atmospheric pressure gas chromatography–tandem mass spectrometry. Chemosphere, 198, 303–310.

    Article  CAS  Google Scholar 

  17. Fu, P. P., Heflich, R. H., Von Tungeln, L. S., Yang, D. T., Fifer, E. K., & Beland, F. A. (1986). Effect of the nitro group conformation on the rat liver microsomal metabolism and bacterial mutagenicity of 2- and 9-nitroanthracene. Carcinogenesis, 7(11), 1819–1827.

    Article  CAS  Google Scholar 

  18. Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety, 128, 67–74.

    Article  CAS  Google Scholar 

  19. Yang, X., Feng, L., Zhang, Y., Hu, H., Shi, Y., Liang, S., et al. (2018). Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotoxicology and Environmental Safety, 161, 198–207.

    Article  CAS  Google Scholar 

  20. Li, R., Kou, X., Geng, H., Xie, J., Tian, J., Cai, Z., et al. (2015). Mitochondrial damage: An important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. Journal of Hazardous Materials, 287, 392–401.

    Article  CAS  Google Scholar 

  21. Liu, D., Lin, T., Syed, L. T., Cheng, Z., Xu, Y., Li, K., Zhang, G., et al (2017). Concentration, source identification, and exposure risk assessment of PM2.5-bound parent PAHs and nitro-PAHs in atmosphere from typical Chinese cities. Scientific Reports, 7(1), 10398.

    Article  Google Scholar 

  22. Andersson, J. T., & Achten, C. (2015). Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycyclic Aromatic Compounds, 35(2–4), 330–354.

    Article  CAS  Google Scholar 

  23. Mayati, A., Le Ferrec, E., Holme, J. A., Fardel, O., Lagadic-Gossmann, D., & Ovrevik, J. (2014). Calcium signaling and β2-adrenergic receptors regulate 1-nitropyrene induced CXCL8 responses in BEAS-2B cells. Toxicology In Vitro, 28(6), 1153–1157.

    Article  CAS  Google Scholar 

  24. Li, R., Zhao, L., Zhang, L., Chen, M., Dong, C., & Cai, Z. (2017). DNA damage and repair, oxidative stress and metabolism biomarker responses in lungs of rats exposed to ambient atmospheric 1-nitropyrene. Environmental Toxicology and Pharmacology, 54, 14–20.

    Article  CAS  Google Scholar 

  25. Shang, Y., Zhou, Q., Wang, T., Jiang, Y., Zhong, Y., Qian, G., et al. (2017). Airborne nitro-PAHs induce Nrf2/ARE defense system against oxidative stress and promote inflammatory process by activating PI3K/Akt pathway in A549 cells. Toxicology In Vitro, 44, 66–73.

    Article  CAS  Google Scholar 

  26. Øvrevik, J., Holme, J. A., Låg, M., Schwarze, P. E., & Refsnes, M. (2013). Differential chemokine induction by 1-nitropyrene and 1-aminopyrene in bronchial epithelial cells: Importance of the TACE/TGF-α/EGFR-pathway. Environmental Toxicology and Pharmacology, 35(2), 235–239.

    Article  Google Scholar 

  27. Podechard, N., Tekpli, X., Catheline, D., Holme, J. A., Rioux, V., Legrand, P., et al. (2011). Mechanisms involved in lipid accumulation and apoptosis induced by 1-nitropyrene in Hepa1c1c7 cells. Toxicology Letters, 206(3), 289–299.

    Article  CAS  Google Scholar 

  28. Li, R., Zhao, L., Zhang, L., Chen, M., Shi, J., Dong, C., et al. (2017). Effects of ambient PM2.5 and 9-nitroanthracene on DNA damage and repair, oxidative stress and metabolic enzymes in lungs of rats. Toxicology Research, 6(5), 654–663.

    Article  CAS  Google Scholar 

  29. Barzilai, A., & Yamamoto, K. (2004). DNA damage responses to oxidative stress. DNA Repair, 3(8–9), 1109–1115.

    Article  CAS  Google Scholar 

  30. Bhat, M. A., & Gandhi, G. (2018). Elevated oxidative DNA damage in patients with coronary artery disease and its association with oxidative stress biomarkers. Acta cardiologica. https://doi.org/10.1080/00015385.2018.1475093.

    Article  PubMed  Google Scholar 

  31. Karahalil, B., Kesimci, E., Emerce, E., Gumus, T., & Kanbak, O. (2011). The impact of OGG1, MTH1 and MnSOD gene polymorphisms on 8-hydroxy-2′-deoxyguanosine and cellular superoxide dismutase activity in myocardial ischemia-reperfusion. Molecular Biology Reports, 38(4), 2427–2435.

    Article  CAS  Google Scholar 

  32. Papeo, G. (2016). MutT Homolog 1 (MTH1): The silencing of a target. Journal of Medicinal Chemistry, 59(6), 2343–2345.

    Article  CAS  Google Scholar 

  33. Risom, L., Møller, P., & Loft, S. (2005). Oxidative stress-induced DNA damage by particulate air pollution. Mutation Research, 592(1–2), 119–137.

    Article  CAS  Google Scholar 

  34. Cao, L. X., Geng, H., Yao, C. T., Zhao, L., Duan, P. L., et al. (2014). Investigation of chemical compositions of atmospheric fine particles during a wintertime haze episode in Taiyuan City. China Environmental Science, 34(4), 837–843.

    CAS  Google Scholar 

  35. Xie, J., Fan, R., & Meng, Z. (2007). Protein oxidation and DNA–protein crosslink induced by sulfur dioxide in lungs livers, and hearts from mice. Inhalation Toxicology, 19, 759–765.

    Article  CAS  Google Scholar 

  36. Shah, A. S., Langrish, J. P., Nair, H., McAllister, D. A., Hunter, A. L., Donaldson, K., et al. (2013). Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet, 382(9897), 1039–1048.

    Article  CAS  Google Scholar 

  37. Mustafic, H., Jabre, P., Caussin, C., Murad, M. H., Escolano, S., Tafflet, M., et al. (2012). Main air pollutants and myocardial infarction: A systematic review and meta-analysis. JAMA, 307(7), 713–721.

    Article  CAS  Google Scholar 

  38. Liang, R., Zhang, B., Zhao, X., Ruan, Y., Lian, H., & Fan, Z. (2014). Effect of exposure to PM2.5 on blood pressure: A systematic review and meta-analysis. Journal of Hypertension, 32(11), 2130–2140.

    Article  CAS  Google Scholar 

  39. Xie, X., Wang, Y., Yang, Y., Xu, J., Zhang, Y., Tang, W., et al. (2018). Long-term exposure to fine particulate matter and tachycardia and heart rate: Results from 10 million reproductive-age adults in China. Environmental Pollution, 242(Pt B), 1371–1378.

    Article  CAS  Google Scholar 

  40. Lee, M. S., Eum, K. D., Fang, S. C., Rodrigues, E. G., Modest, G. A., & Christiani, D. C. (2014). Oxidative stress and systemic inflammation as modifiers of cardiac autonomic responses to particulate air pollution. International Journal of Cardiology, 176(1), 166–170.

    Article  Google Scholar 

  41. Chu, M., Sun, C., Chen, W., Jin, G., Gong, J., Zhu, M., et al. (2015). Personal exposure to PM2.5, genetic variants and DNA damage: A multi-center population-based study in Chinese. Toxicology Letters, 235(3), 172–178.

    Article  CAS  Google Scholar 

  42. Wu, J., Shi, Y., Asweto, C. O., Feng, L., Yang, X., Zhang, Y., et al. (2017). Fine particle matters induce DNA damage and G2/M cell cycle arrest in human bronchial epithelial BEAS-2B cells. Environmental Science and Pollution Research, 24(32), 25071–25081.

    Article  CAS  Google Scholar 

  43. Meng, Z., & Zhang, Q. (2007). Damage effects of dust storm PM2.5 on DNA in alveolar macrophages and lung cells of rats. Food and Chemical Toxicology, 45(8), 1368–1374.

    Article  CAS  Google Scholar 

  44. Cakmakoglu, B., Aydin, M., & Cincin, Z. B. (2011). Effect of oxidative stress on DNA repairing genes, INTECH Open Access Publisher. https://doi.org/10.5772/21054.

    Article  Google Scholar 

  45. Nemmar, A., Beegam, S., Yuvaraju, P., Yasin, J., Tariq, S., Attoub, S., et al. (2016). Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Particle and Fibre Toxicology, 13(1), 22.

    Article  Google Scholar 

  46. Zhang, P., Yi, L. H., Meng, G. Y., Zhang, H. Y., Sun, H. H., & Cui, L. Q. (2017). Apelin-13 attenuates cisplatin-induced cardiotoxicity through inhibition of ROS-mediated DNA damage and regulation of MAPKs and AKT pathways. Free Radical Research, 51(5), 449–459.

    Article  CAS  Google Scholar 

  47. Bai, Y., Jiang, L. P., Liu, X. F., Wang, D., Yang, G., Geng, C. Y., et al. (2015). The role of oxidative stress in citreoviridin-induced DNA damage in human liver-derived HepG2 cells. Environmental Toxicology, 30(5), 530–537.

    Article  CAS  Google Scholar 

  48. Tokarz, P., Kaarniranta, K., & Blasiak, J. (2016). Inhibition of DNA methyltransferase or histone deacetylase protects retinal pigment epithelial cells from DNA damage induced by oxidative stress by the stimulation of antioxidant enzymes. European Journal of Pharmacology, 776, 167–175.

    Article  CAS  Google Scholar 

  49. Sharma, R., Yang, Y., Sharma, A., Awasthi, S., & Awasthi, Y. C. (2004). Antioxidant role of glutathione S-transferases: Protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxidants and Redox Signaling, 6(2), 289–300.

    Article  CAS  Google Scholar 

  50. Takahashi, T., Morita, K., Akagi, R., & Sassa, S. (2004). Heme oxygenase-1: A novel therapeutic target in oxidative tissue injuries. Current Medicinal Chemistry, 11(12), 1545–1561.

    Article  CAS  Google Scholar 

  51. Hwang, E. S., & Kim, G. H. (2007). Biomarkers for oxidative stress status of DNA, lipids, and proteins in vitro and in vivo cancer research. Toxicology, 229(1–2), 1–10.

    Article  CAS  Google Scholar 

  52. Arnold Groehler, I. V., Kren, S., Li, Q., Robledo-Villafane, M., Schmidt, J., Garry, M., et al. (2018). Oxidative cross-linking of proteins to DNA following ischemia-reperfusion injury. Free Radical Biology and Medicine, 120, 89–101.

    Article  Google Scholar 

  53. Sagai, M., Saito, H., Ichinose, T., Kodama, M., & Mori, Y. (1993). Biological effects of diesel exhaust particles. I. In vitro production of superoxide and in vivo toxicity in mouse. Free Radical Biology and Medicine, 14(1), 37–47.

    Article  CAS  Google Scholar 

  54. Kim, Y. D., Ko, Y. J., Kawamoto, T., & Kim, H. (2005). The effects of 1-nitropyrene on oxidative DNA damage and expression of DNA repair enzymes. Journal of Occupational Health, 47, 261–266.

    Article  CAS  Google Scholar 

  55. Luethy, J. D., & Holbrook, N. J. (1992). Activation of the GADD153 promoter by genotoxic agents: A rapid and specific response to DNA damage. Cancer Research, 52(1), 5–10.

    CAS  PubMed  Google Scholar 

  56. Jeong, J. K., Stevens, J. L., Lau, S. S., & Monks, T. J. (1996). Quinone thioether-mediated DNA damage, growth arrest, and gadd153 expression in renal proximal tubular epithelial cells. Molecular Pharmacology, 50(3), 592–598.

    CAS  PubMed  Google Scholar 

  57. Nallanthighal, S., Chan, C., Murray, T. M., Mosier, A. P., Cady, N. C., & Reliene, R. (2017). Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in OGG1-deficient and wild type mice. Nanotoxicology, 11(8), 1–16.

    Article  Google Scholar 

  58. Hanssen-Bauer, A., Solvang-Garten, K., Akbari, M., & Otterlei, M. (2012). X-ray repair cross complementing protein 1 in base excision repair. International Journal of Molecular Sciences, 13(12), 17210–17229.

    Article  CAS  Google Scholar 

  59. Oh, S. M., Kim, H. R., Yong, J. P., Lee, S. Y., & Chung, K. H. (2011). Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells). Mutation Research, 723(2), 142–151.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 91543202) and the Nature Science Foundation of Shanxi Province in China (No. 2014011036-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruijin Li or Zongwei Cai.

Additional information

Handling Editor: Travis Knuckles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Zhang, L., Chen, M. et al. Effects of Ambient Atmospheric PM2.5, 1-Nitropyrene and 9-Nitroanthracene on DNA Damage and Oxidative Stress in Hearts of Rats. Cardiovasc Toxicol 19, 178–190 (2019). https://doi.org/10.1007/s12012-018-9488-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9488-5

Keywords

Navigation