Skip to main content
Log in

Transcriptome Analysis of Gluconobacter oxydans WSH-003 Exposed to Elevated 2-Keto-L-Gulonic Acid Reveals the Responses to Osmotic and Oxidative Stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Industrial production of 2-keto-L-gulonic acid (2-KLG), the precursor of vitamin C, is mainly achieved by a two-step fermentation process carried out by Gluconobacter oxydans, Bacillus, and Ketogulonicigenium. One of the most promising innovations that could replace this complicated two-step fermentation process is the integration of the essential genes for synthesis of 2-KLG into G. oxydans and use of it as the producer. Therefore, determining the tolerance and response of G. oxydans to 2-KLG is a priority for improving the direct production of 2-KLG in this bacterium. In this study, a global view of the gene expression of G. oxydans WSH-003 in response to 2-KLG challenge was investigated by RNA sequencing. A total of 363 genes of G. oxydans that were differentially expressed in response to 2-KLG were uncovered. The results showed that 2-KLG could lead to oxidative stress, osmotic stress, and DNA damage in G. oxydans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, J., Zhou, J., Liu, J., Chen, K., Liu, L., & Chen, J. (2011). Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Bioresource Technology, 102(7), 4807–4814.

    Article  CAS  PubMed  Google Scholar 

  2. Beach, D. (2016). Ascorbic acid market for pharmaceutical, food & beverages, personal care and other end-user industries: global industry perspective, comprehensive analysis and forecast, 2015 - 2021. Dublin.

  3. Pappenberger, G., & Hohmann, H.-P. (2014). Industrial production of L-ascorbic acid (vitamin C) and D-isoascorbic acid. In H. Zorn & P. Czermak (Eds.), Biotechnology of food and feed additives (pp. 143–188). Berlin, Heidelberg: Springer.

    Google Scholar 

  4. Gao, L. L., Hu, Y. D., Liu, J., Du, G. C., Zhou, J. W., & Chen, J. (2014). Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol. Metabolic Engineering, 24, 30–37.

    Article  CAS  PubMed  Google Scholar 

  5. Takagi, Y., Sugisawa, T., & Hoshino, T. (2010). Continuous 2-keto-l-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia. Applied Microbiology and Biotechnology, 86(2), 469–480.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, Y. B., Liu, J., Du, G. C., Zhou, J. W., & Chen, J. (2012). Sporulation and spore stability of Bacillus megaterium enhance Ketogulonigenium vulgare propagation and 2-keto-L-gulonic acid biosynthesis. Bioresource Technology, 107, 399–404.

    Article  CAS  PubMed  Google Scholar 

  7. Hancock, R. D., & Viola, R. (2001). The use of micro-organisms for L- ascorbic acid production: current status and future perspectives. Applied Microbiology and Biotechnology, 56(5-6), 567–576.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, E.-X., Ding, M.-Z., Ma, Q., Dong, X.-T., & Yuan, Y.-J. (2016). Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation. Microbial Cell Factories, 15(1), 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Miyazaki, T., Sugisawa, T., & Hoshino, T. (2006). Pyrroloquinoline quinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of L-sorbosone to L-ascorbic acid. Applied and Environmental Microbiology, 72(2), 1487–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Du, J., Bai, W., Song, H., & Yuan, Y. J. (2013). Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-L-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Metabolic Engineering, 19, 50–56.

    Article  PubMed  CAS  Google Scholar 

  11. Zhou, J. W., Du, G. C., & Chen, J. (2012). Metabolic engineering of microorganisms for vitamin C production. Sub-Cellular Biochemistry, 64, 241–259.

    Article  CAS  PubMed  Google Scholar 

  12. Makover, S., Ramsey, G. B., Vane, F. M., Witt, C. G., & Wright, R. B. (1975). New mechanisms for the biosynthesis and metabolism of 2-keto-L-gulonic acid in bacteria. Biotechnology and Bioengineering, 17(10), 1485–1514.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, F., Jia, Q., Xiong, Z., Zhang, X., Wu, H., Zhao, Y., Yang, J., Zhu, J., Dong, J., Xue, Y., Sun, L., Shen, Y., & Jin, Q. (2006). Complete genome analysis of Ketogulonigenium sp. WB0104. Chinese Science Bulletin, 51(8), 941–945.

    Article  CAS  Google Scholar 

  14. Chen, F., Chen, C., Li, Y., & Yin, G. (2000). Studies on gene knocking out of 2-keto aldose reductases from Erwinia sp. SCB125. Acta Microbiologica Sinica, 40(5), 475–481.

    PubMed  Google Scholar 

  15. Jia, N., Ding, M.-Z., Zou, Y., Gao, F., & Yuan, Y.-J. (2017). Comparative genomics and metabolomics analyses of the adaptation mechanism in Ketogulonicigenium vulgare-Bacillus thuringiensis consortium. Scientific Reports, 7(1), 46759.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao, L. L., Zhou, J. W., Liu, J., Du, G. C., & Chen, J. (2012). Draft genome sequence of Gluconobacter oxydans WSH-003, a strain that is extremely tolerant of saccharides and alditols. Journal of Bacteriology, 194(16), 4455–4456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, X. B., Liu, J., Du, G. C., Zhou, J. W., & Chen, J. (2013). Efficient production of L-sorbose from D-sorbitol by whole cell immobilization of Gluconobacter oxydans WSH-003. Biochemical Engineering Journal, 77, 171–176.

    Article  CAS  Google Scholar 

  18. Park, H.-S., Um, Y., Sim, S. J., Lee, S. Y., & Woo, H. M. (2015). Transcriptomic analysis of Corynebacterium glutamicum in the response to the toxicity of furfural present in lignocellulosic hydrolysates. Process Biochemistry, 50(3), 347–356.

    Article  CAS  Google Scholar 

  19. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L., & Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674–3676.

    Article  CAS  PubMed  Google Scholar 

  21. Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings. National Academy of Sciences. United States of America, 95(25), 14863–14868.

    Article  CAS  Google Scholar 

  22. Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). Nbclust: an R package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61(6), 1–36.

    Article  Google Scholar 

  23. Zhao, S. H., Zhao, X. R., Zou, H. J., Fu, J. W., Du, G. C., Zhou, J. W., & Chen, J. (2014). Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. Journal of Proteomics, 101, 102–112.

    Article  CAS  PubMed  Google Scholar 

  24. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  25. Cotter, P. A., & Miller, J. F. (1998). In vivo and ex vivo regulation of bacterial virulence gene expression. Current Opinion in Microbiology, 1(1), 17–26.

    Article  CAS  PubMed  Google Scholar 

  26. Xu, P., Qiao, K., & Stephanopoulos, G. (2017). Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnology and Bioengineering, 114(7), 1521–1530.

    Article  CAS  PubMed  Google Scholar 

  27. Perera, I. C., & Grove, A. (2010). Molecular mechanisms of ligand-mediated attenuation of DNA ninding by MarR family transcriptional regulators. Journal of Molecular Cell Biology, 2(5), 243–254.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, H., Yang, C. L., Ge, M. Y., Ibrahim, M., Li, B., Zhao, W. J., Chen, G. Y., Zhu, B., & Xie, G. L. (2014). Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress. Frontiers in Microbiology, 5, 547.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gallegos, M. T., Schleif, R., Bairoch, A., Hofmann, K., & Ramos, J. L. (1997). Arac/XylS family of transcriptional regulators. Microbiology and Molecular Biology Reviews, 61(4), 393–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, K. J., Zhou, J. W., Liu, L. M., Liu, J., Du, G. C., & Chen, J. (2010). Enhancing 2-keto-L-gulonic acid production under hyperosmotic stress by adding sucrose. Chinese Journal of Biotechnology, 26(11), 1507–1513.

    CAS  PubMed  Google Scholar 

  31. Wood, J. M. (2006). Osmosensing by bacteria. Science's STKE, 357, pe43.

    Google Scholar 

  32. Wood, J. M., Bremer, E., Csonka, L. N., Kraemer, R., Poolman, B., van der Heide, T., & Smith, L. T. (2001). Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 130(3), 437–460.

    Article  CAS  Google Scholar 

  33. Kung, C. (2005). A possible unifying principle for mechanosensation. Nature, 436(7051), 647–654.

    Article  CAS  PubMed  Google Scholar 

  34. Schmid, B., Klumpp, J., Raimann, E., Loessner, M. J., Stephan, R., & Tasara, T. (2009). Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Applied and Environmental Microbiology, 75(6), 1621–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou, J. W., Wang, K., Xu, S., Wu, J. J., Liu, P. R., Du, G. C., Li, J. H., & Chen, J. (2015). Identification of membrane proteins associated with phenylpropanoid tolerance and transport in Escherichia coli BL21. Journal of Proteomics, 113, 15–28.

    Article  CAS  PubMed  Google Scholar 

  36. Wikstrom, M., Bogachev, A., Finel, M., Morgan, J. E., Puustinen, A., Raitio, M., Verkhovskaya, M., & Verkhovsky, M. I. (1994). Mechanism of proton translocation by the respiratory oxidases. The histidine cycle. Biochimica et Biophysica Acta, 1187(2), 106–111.

    Article  CAS  PubMed  Google Scholar 

  37. Atack, J.M., Kelly, D.J. (2007). Structure, mechanism and physiological roles of bacterial cytochrome c peroxidases. In Poole, R.K. (ed) Adv Microb Physiol 52:73–106.

  38. Hanke, T., Richhardt, J., Polen, T., Sahm, H., Bringer, S., & Bott, M. (2012). Influence of oxygen limitation, absence of the cytochrome bc1 complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology. Journal of Biotechnology, 157(3), 359–372.

    Article  CAS  PubMed  Google Scholar 

  39. Nairz, M., Schroll, A., Sonnweber, T., & Weiss, G. (2010). The struggle for iron - a metal at the host-pathogen interface. Cellular Microbiology, 12(12), 1691–1702.

    Article  CAS  PubMed  Google Scholar 

  40. Chu, B. C., Peacock, R. S., & Vogel, H. J. (2007). Bioinformatic analysis of the TonB protein family. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine, 20(3-4), 467–483.

    Article  CAS  Google Scholar 

  41. Roeßler, M., Sewald, X., & Mãller, V. (2003). Chloride dependence of growth in bacteria. FEMS Microbiology Letters, 225(1), 161–165.

    Article  CAS  Google Scholar 

  42. Fan, Y., Wu, J., Ung, M. H., De Lay, N., Cheng, C., & Ling, J. (2015). Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Research, 43(3), 1740–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alvarez-Martinez, C. E., & Christie, P. J. (2009). Biological diversity of prokaryotic type IV secretion systems. Microbiology and Molecular Biology Reviews, 73(4), 775–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Christie, P. J. (2004). Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochimica et Biophysica Acta, 1694(1-3), 219–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., & Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annual Review of Microbiology, 59(1), 451–485.

    Article  CAS  PubMed  Google Scholar 

  46. Koraimann, G. (2003). Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cellular and Molecular Life Sciences, 60(11), 2371–2388.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2019YFA09004900), the National Natural Science Foundation of China (31830068, 21822806), and the National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Zhou.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

ESM 2

(PDF 78 kb)

ESM 3

(PDF 87 kb)

ESM 4

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Wan, H., Zeng, W. et al. Transcriptome Analysis of Gluconobacter oxydans WSH-003 Exposed to Elevated 2-Keto-L-Gulonic Acid Reveals the Responses to Osmotic and Oxidative Stress. Appl Biochem Biotechnol 193, 128–141 (2021). https://doi.org/10.1007/s12010-020-03405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03405-8

Keywords

Navigation